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1  INTRODUCTION 

Extreme weather events, including hurricanes, 

heatwaves, droughts, and floods, have intensified in 

frequency and severity due to global climate change 

(Alley et al., 2019). These events pose significant 

challenges to public safety, infrastructure, and 

economies worldwide. According to the 

Intergovernmental Panel on Climate Change 

(Chattopadhyay, Nabizadeh, et al., 2020), the rise in 

global temperatures and shifting precipitation patterns 

are primary drivers of these changes. Regional 

disparities further complicate the scenario, as areas 

experience different vulnerabilities based on 

geographical, meteorological, and socio-economic 

factors (Guerreiro et al., 2020). Addressing these 

challenges requires innovative approaches, including 

the application of advanced technologies such as deep 

learning to analyze and predict extreme weather events 

(Salcedo-Sanz et al., 2023). Such approaches provide a 

means to process complex and voluminous 

meteorological data, offering actionable insights for 

disaster preparedness and mitigation (Fabbian et al., 

2007). 

Traditional methods for weather prediction, such as 

numerical weather models, rely on physical equations 

and statistical techniques (Liu et al., 2016). While 

effective, these methods are often limited in their ability 

to capture the non-linear and dynamic nature of 

atmospheric phenomena, particularly for localized 

extreme weather events (Zhu et al., 2017). Recent 

advancements in machine learning, specifically deep 

learning, have shown promise in overcoming these 

limitations. Deep learning models can learn intricate 
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 The increasing frequency and severity of extreme weather events 
necessitate advanced predictive models that can effectively analyze 
complex meteorological phenomena. This study conducts a systematic 
review of 120 peer-reviewed articles to explore the application of deep 
learning techniques in weather prediction, adhering to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines. The review highlights the transformative 
potential of hybrid deep learning models, which integrate 
Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs) to capture both spatial and temporal dependencies, 
significantly improving the accuracy of extreme weather forecasting. 
The study also examines the integration of multi-modal data sources, 
such as satellite imagery, IoT sensors, and ground-based observations, 
to enable comprehensive analyses of weather systems. Additionally, 
the role of Explainable Artificial Intelligence (XAI) in enhancing the 
interpretability of predictions and fostering stakeholder trust is 
critically analyzed. Findings reveal that while deep learning 
approaches offer substantial advancements, challenges related to data 
quality, computational demands, and resource disparities remain 
significant. This review underscores the need for global collaboration 
and innovation to address these limitations, paving the way for more 
reliable and equitable applications of AI-driven weather forecasting 
systems. 
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patterns and relationships within large datasets, making 

them highly suitable for analyzing the multifaceted 

nature of extreme weather events (Hartigan, 

MacNamara, & Leslie, 2020). This capability has led to 

a growing body of research focusing on leveraging deep 

learning algorithms to enhance the accuracy of weather 

predictions. Moreover, studies have demonstrated the 

efficacy of deep learning techniques in predicting 

specific extreme weather phenomena (Pullman et al., 

2019). For instance, Convolutional Neural Networks 

(CNNs) have been utilized to analyze spatial weather 

patterns, while Recurrent Neural Networks (RNNs) and 

their variants, such as Long Short-Term Memory 

(LSTM) networks, excel at capturing temporal 

dependencies in weather data (Fabbian et al., 2007; 

Pullman et al., 2019). Similarly, hybrid models 

combining CNNs and RNNs have shown potential in 

simultaneously addressing spatial and temporal 

complexities, providing improved predictive 

capabilities for extreme events like cyclones and floods 

(Wang et al., 2022). These models can analyze diverse 

inputs, including satellite imagery, historical weather 

data, and real-time meteorological parameters, making 

them indispensable tools for regional weather analysis.  

Regional disparities in data availability, quality, and 

meteorological patterns pose significant hurdles for the 

widespread implementation of deep learning models, 

demanding tailored approaches to address location-

specific challenges and optimize predictive accuracy 

(Stott et al., 2015). For example, densely populated 

urban areas often require high-resolution data for 

accurate predictions, while rural or underdeveloped 

regions may struggle with limited meteorological 

infrastructure (Woollings et al., 2018). Addressing 

these disparities requires integrating diverse data 

sources and optimizing model architectures to cater to 

the unique characteristics of each region. Moreover, the 

interdisciplinary nature of this field highlights the 

importance of collaboration between climate scientists, 

data scientists, and policymakers. Studies emphasize 

that while deep learning models offer technical 

solutions, their real-world application depends on 

effective communication and implementation within 

the broader climate adaptation framework 

(Chattopadhyay, Nabizadeh, et al., 2020; Woollings et 

al., 2018). The use of explainable artificial intelligence 

(XAI) in weather prediction is emerging as a vital 

component to ensure transparency and trust in model 

predictions (Fabbian et al., 2007). Thus, deep learning 

not only provides a technological advantage but also 

serves as a bridge between data-driven insights and 

practical policy decisions (Fister et al., 2023). The 

primary objective of this study is to explore the 

application of deep learning techniques in analyzing 

and predicting extreme weather events at the regional 

level. By focusing on region-specific meteorological 

data, this research aims to enhance the accuracy of 

weather predictions and identify localized patterns of 

extreme weather occurrences. Specifically, the study 

investigates how advanced deep learning architectures, 

such as Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), can effectively 

process large-scale datasets to improve understanding 

of spatial and temporal dynamics. Furthermore, it seeks 

Figure 1: U.S. Climate Extremes Index (CEI) 

 

 

Source: climate.gov 
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to address existing challenges in data quality, model 

customization, and real-world applicability by 

proposing optimized frameworks tailored to diverse 

regional contexts. The findings of this research are 

intended to contribute to disaster preparedness and 

mitigation strategies, providing actionable insights for 

policymakers, urban planners, and climate scientists. 

Through this work, the study also aims to bridge gaps 

between computational advancements and practical 

applications in climate adaptation efforts. 

2 LITERATURE REVIEW 

The increasing frequency and intensity of extreme 

weather events necessitate a deeper understanding of 

their patterns and impacts. The literature on climate 

science and predictive modeling has evolved 

significantly, particularly with the integration of 

artificial intelligence (AI) and deep learning techniques. 

This section reviews the existing body of knowledge on 

the use of deep learning for weather analysis, focusing 

on regional-specific challenges and opportunities. It 

also examines the theoretical frameworks and 

methodologies employed in prior studies to identify 

trends, gaps, and future directions in this emerging field. 

By synthesizing key findings, this review provides a 

comprehensive foundation for exploring how deep 

learning can be leveraged to enhance regional weather 

predictions and improve disaster management 

strategies. 

 Overview of traditional weather prediction 

models 

Traditional weather prediction models have played a 

foundational role in understanding atmospheric 

behavior and forecasting weather patterns 

(Chattopadhyay et al., 2020). These models are 

primarily based on numerical weather prediction 

(NWP), which uses mathematical equations derived 

from physical laws, such as the conservation of mass, 

momentum, and energy, to simulate atmospheric 

processes (Salcedo-Sanz et al., 2023). NWP models, 

such as the Global Forecast System (GFS) and the 

European Centre for Medium-Range Weather Forecasts 

(ECMWF), rely on initial conditions obtained from 

observations to predict future states of the atmosphere 

(Liu et al., 2016). Despite their widespread use, these 

models are often constrained by inaccuracies in initial 

conditions, leading to forecast errors over time. For 

example, Zhu et al., (2017) highlighted the sensitivity 

of atmospheric systems to initial conditions, famously 

referred to as the "butterfly effect," which poses 

challenges in long-term weather forecasting.Moreover, 

statistical models have also been utilized to complement 

NWP systems, particularly for localized weather 

predictions. These models leverage historical data and 

statistical relationships between weather variables to 

produce forecasts (Hartigan et al., 2020). Techniques 

such as regression analysis, time-series modeling, and 

ensemble forecasting have proven effective for specific 

applications, such as seasonal rainfall predictions 

(Pullman et al., 2019). However, the reliance on 

historical data makes these models less effective in 

Figure 2: Deep Learning in Weather Prediction 
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capturing unprecedented or extreme weather events 

(Nakamura & Huang, 2018). Furthermore, statistical 

models often struggle with spatial heterogeneity, as 

weather conditions vary significantly across different 

regions (Wang et al., 2022). This limitation underscores 

the need for more dynamic and adaptable forecasting 

methods. 

Another key component of traditional weather 

prediction is satellite-based observation systems, which 

provide essential data inputs for NWP models (Straaten 

et al., 2022). Satellites, such as those operated by 

NOAA and EUMETSAT, offer high-resolution 

imagery and atmospheric measurements, significantly 

improving forecast accuracy (Román-Cascón et al., 

2012). Techniques like radiative transfer modeling and 

data assimilation processes help integrate satellite 

observations into prediction models, enabling near-real-

time updates (Bari & Ouagabi, 2020). However, the 

sheer volume and complexity of satellite data pose 

challenges for traditional models, which often lack the 

computational efficiency required to fully utilize these 

datasets (Chen et al., 2023). As a result, there is a 

growing recognition of the need for advanced methods 

capable of handling large-scale data. Despite their 

limitations, traditional weather prediction models have 

been instrumental in advancing meteorological science 

and disaster preparedness. Over the decades, these 

models have provided valuable insights into 

atmospheric dynamics and improved the accuracy of 

short- to medium-range forecasts (Zhou et al., 2019). 

However, the increasing complexity of extreme weather 

events, driven by climate change, has exposed the 

limitations of traditional approaches in predicting such 

events with high precision and spatial granularity 

(Sheridan, 2018). This has led to a shift towards 

integrating advanced technologies, such as machine 

learning and deep learning, to complement traditional 

models and address their inherent challenges. 

 Advancements in Extreme Weather Prediction 

Models 

Advancements in extreme weather prediction models 

have significantly improved the accuracy and reliability 

of forecasts in recent years (Burke et al., 2020). The 

development of high-resolution numerical weather 

prediction (NWP) models has been a cornerstone in this 

progress. Enhanced computational capabilities have 

enabled the simulation of smaller-scale atmospheric 

phenomena, such as localized thunderstorms and 

tornadoes, which were previously difficult to model 

(Weyn et al., 2019). Models such as the European 

Centre for Medium-Range Weather Forecasts 

(ECMWF) and the Global Forecast System (GFS) now 

incorporate data assimilation techniques that combine 

observations from satellites, radars, and surface stations 

to refine initial conditions, thereby reducing forecast 

uncertainties (Marzban et al., 2007). Despite these 

Figure 3: Overview of traditional weather prediction models 
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advancements, challenges remain in modeling extreme 

weather events due to their complex and chaotic nature, 

which often surpasses the capabilities of traditional 

NWP systems (Dueben & Bauer, 2018). Moreover, the 

integration of ensemble forecasting has also 

revolutionized extreme weather predictions. Ensemble 

forecasting involves running multiple simulations with 

slightly varied initial conditions to account for 

uncertainties in weather data (Jergensen et al., 2019). 

This approach has been particularly effective in 

predicting the probability of extreme weather events, 

such as hurricanes and heatwaves, by providing a range 

of potential outcomes rather than a single deterministic 

forecast (Murphy, 1992). For example, the ensemble-

based Hurricane Weather Research and Forecasting 

(HWRF) model has demonstrated significant 

improvements in track and intensity predictions during 

hurricane seasons (Whan & Schmeits, 2018). However, 

ensemble forecasting requires substantial 

computational resources, which can limit its 

accessibility and implementation in resource-

constrained regions (Yucel et al., 2015). 

Incorporating machine learning techniques into weather 

prediction has further enhanced the ability to forecast 

extreme events (Bolton & Zanna, 2019). Deep learning 

algorithms, such as Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), have 

shown promise in analyzing large-scale meteorological 

datasets and capturing complex spatial-temporal 

relationships (Pullman et al., 2019). For instance, CNNs 

have been employed to process satellite imagery and 

identify storm patterns, while RNNs are effective in 

modeling sequential data for long-term predictions 

(Asthana et al., 2021). Additionally, hybrid models that 

combine NWP with machine learning methods have 

demonstrated improved predictive performance by 

leveraging the strengths of both approaches (Schlef et 

al., 2019). Despite these advancements, the 

interpretability of machine learning models remains a 

concern, as the "black-box" nature of these algorithms 

can hinder their adoption in critical applications like 

disaster management (Hartigan et al., 2020). Emerging 

trends in data assimilation and multi-modal data 

integration have further pushed the boundaries of 

extreme weather prediction. The use of high-resolution 

satellite imagery, coupled with data from Internet of 

Things (IoT) devices, has enabled near-real-time 

updates to forecasting models (Burke et al., 2020). For 

example, advancements in radiative transfer models 

have improved the assimilation of satellite radiances, 

enhancing the detection of phenomena like atmospheric 

rivers and tropical cyclones (Burke et al., 2020). 

Figure 4: The progression of global weather forecasting system. 

 

 

Source: Han (2023) 
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Additionally, the development of probabilistic models, 

such as Bayesian networks, has allowed researchers to 

quantify uncertainties in extreme weather predictions 

and assess risks more comprehensively (Belayneh et al., 

2016). While these advancements have significantly 

improved prediction accuracy, their implementation 

often requires robust infrastructure and technical 

expertise, underscoring the need for global 

collaboration and capacity-building in meteorological 

sciences (Chattopadhyay, Hassanzadeh, et al., 2020). 

 Theoretical Frameworks Underpinning Deep 

Learning in Weather Analysis 

Deep learning has emerged as a transformative tool in 

weather analysis, offering a theoretical foundation for 

capturing the complexity and dynamism of atmospheric 

systems (LeCun et al., 2015). Rooted in neural network 

architectures, deep learning models are designed to 

identify intricate patterns in data that traditional 

statistical methods often overlook (Ardabili et al., 

2020). These models operate by leveraging multiple 

layers of interconnected nodes, enabling the automatic 

extraction of hierarchical features from meteorological 

datasets (Reichstein et al., 2019). For instance, in the 

context of weather prediction, deep learning 

frameworks utilize these hierarchical structures to 

analyze spatial, temporal, and multi-modal data, 

thereby addressing the challenges of extreme weather 

prediction (Chen et al., 2023). The theoretical 

underpinnings of deep learning provide a basis for 

modeling nonlinear relationships in atmospheric 

phenomena, which are critical for understanding and 

forecasting extreme weather events. 

2.3.1 Neural Network Architectures and Their 

Relevance to Climate Science 

Neural network architectures, particularly 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), are highly relevant to climate 

science due to their ability to process and learn from 

diverse datasets (Jiang et al., 2019). CNNs are well-

suited for spatial data analysis, such as interpreting 

satellite imagery and identifying weather patterns 

(Weyn et al., 2019). These models apply convolutional 

layers to extract features like cloud formations and 

precipitation trends, making them indispensable for 

detecting storms and cyclones (Shin et al., 2016). In 

contrast, RNNs, including their variants like Long 

Short-Term Memory (LSTM) networks, excel in 

analyzing temporal sequences, enabling them to capture 

dependencies in time-series data such as temperature 

and wind speed (Barnes et al., 2022). By combining 

spatial and temporal analysis, neural networks offer a 

comprehensive approach to studying complex weather 

phenomena, demonstrating their potential to address 

long-standing challenges in meteorology. 

2.3.2 Theoretical Principles of CNNs, RNNs, and 

Hybrid Models in Meteorology 

The theoretical principles of CNNs and RNNs, along 

with hybrid models that integrate the two, highlight 

their application in meteorological studies (Zang et al., 

2023). CNNs are inspired by the human visual system 

and utilize kernel functions to extract spatial hierarchies 

in data, enabling them to analyze high-resolution 

satellite imagery effectively (Aghelpour et al., 2020). 

On the other hand, RNNs operate on the principle of 

recurrent connections, allowing information to flow 

cyclically within the network to learn temporal patterns 

(Zang et al., 2023). Hybrid models, such as ConvLSTM, 

combine the strengths of both CNNs and RNNs, 

enabling simultaneous spatial and temporal feature 

extraction (Sherstinsky, 2020). These hybrid 

frameworks have been successfully applied in 

precipitation nowcasting and extreme weather 

forecasting, demonstrating their superiority over 

Figure 5: Theoretical Frameworks Underpinning Deep Learning in Weather Analysis 
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standalone models (Zang et al., 2023). The ability of 

hybrid models to adapt to complex meteorological 

datasets underscores their theoretical and practical 

significance in weather analysis. Despite their 

advantages, neural network architectures in 

meteorology face challenges related to data quality, 

model interpretability, and computational demands 

(Aghelpour et al., 2020). Deep learning models require 

vast amounts of labeled data to achieve optimal 

performance, but meteorological datasets often suffer 

from inconsistencies and gaps due to measurement 

errors and limited spatial coverage (Schuster & Paliwal, 

1997). Furthermore, the "black-box" nature of neural 

networks poses difficulties in explaining predictions, 

which is critical for decision-making in disaster 

management (Chattopadhyay, Hassanzadeh, et al., 

2020). Computational requirements for training deep 

networks are another limitation, particularly for 

resource-intensive hybrid models like ConvLSTM 

(Wang et al., 2023). These challenges highlight the need 

for continual refinement of deep learning frameworks 

to enhance their applicability in meteorological 

research. 

 Applications of Convolutional Neural 

Networks (CNNs) in Weather Analysis 

Convolutional Neural Networks (CNNs) have become 

a transformative tool in weather analysis, particularly 

for spatial pattern recognition in extreme weather 

prediction (Flora et al., 2021). These deep learning 

models are specifically designed to analyze spatial data, 

making them highly effective in identifying 

atmospheric phenomena such as cloud formations, 

precipitation patterns, and temperature anomalies 

(Straaten et al., 2022). CNNs work by applying 

convolutional layers to input data, extracting 

hierarchical features that represent the spatial 

characteristics of weather systems (McGovern et al., 

2017). For instance, CNNs have been successfully 

utilized to process satellite imagery, enabling accurate 

identification of severe weather conditions, including 

hurricanes and tornadoes (Fang et al., 2021). The ability 

of CNNs to handle high-dimensional data has made 

them an essential component in modern meteorological 

applications. The use of CNNs for flood prediction has 

demonstrated significant advancements in spatial 

pattern recognition and extreme weather forecasting. 

Flood prediction requires accurate spatial data analysis, 

as the impact of floods is highly localized and 

influenced by terrain, rainfall distribution, and land use 

(Leinonen et al., 2023). Studies have shown that CNNs, 

when trained on high-resolution satellite images and 

hydrological data, can identify flood-prone areas and 

predict water levels with high accuracy (Scher, 2018; 

Leinonen et al., 2023). For example, a CNN-based flood 

forecasting system implemented in Southeast Asia 

successfully reduced response times for disaster 

management by providing early warnings based on real-

time data integration (Zscheischler et al., 2020). Such 

applications highlight the potential of CNNs in 

mitigating the adverse impacts of extreme weather 

events through timely and precise predictions. 

Cyclone forecasting is another area where CNNs have 

proven highly effective. By analyzing spatial data such 

as wind patterns, cloud formations, and ocean 

temperatures, CNNs can predict the intensity and 

trajectory of cyclones with greater precision than 

traditional methods (Fang et al., 2021). A notable case 

study involved the use of CNNs in the prediction of 

Cyclone Fani, where the model outperformed 

conventional numerical weather prediction methods in 

forecasting the cyclone’s landfall location and intensity 

(Leinonen et al., 2023). Similarly, hybrid CNN models 

that incorporate additional data sources, such as 

atmospheric pressure and humidity, have been 

employed to enhance prediction accuracy for tropical 

storms (Scher, 2018). These advancements underline 

the versatility and reliability of CNN-based models in 

addressing complex meteorological challenges. Despite 

their effectiveness, CNN-based models for weather 

analysis face challenges related to data availability, 

computational demands, and generalizability. High-

resolution satellite imagery, a critical input for CNNs, 

is not uniformly available across all regions, 

particularly in developing countries (Zscheischler et al., 

2020). Moreover, the computational resources required 

to train CNNs on large datasets can be prohibitive, 

limiting their accessibility for resource-constrained 

meteorological agencies (Raymond et al., 2020). 

Additionally, while CNNs excel at spatial data analysis, 

they often require integration with other deep learning 

architectures, such as Recurrent Neural Networks 

(RNNs), to capture temporal dependencies effectively 

(McGovern et al., 2017). Addressing these challenges is 

essential to fully unlock the potential of CNNs in 

weather analysis and extreme weather prediction. 
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Temporal Data Analysis Using Recurrent Neural 

Networks (RNNs) 

Recurrent Neural Networks (RNNs) have become a 

pivotal tool for temporal data analysis in meteorology 

due to their ability to capture sequential dependencies 

in time-series datasets (Chattopadhyay et al., 2019). 

Unlike traditional machine learning models, RNNs are 

designed to process data with temporal ordering, 

making them particularly suited for analyzing weather 

patterns that evolve over time (Chattopadhyay et al., 

2020). By incorporating feedback loops, RNNs retain 

contextual information from previous time steps, 

allowing them to model complex relationships between 

weather variables, such as temperature, wind speed, and 

precipitation (Wang et al., 2023). These capabilities 

have made RNNs instrumental in addressing the 

challenges of long-term weather forecasting, where 

temporal dependencies are critical for accurate 

predictions (Zang et al., 2023). Long Short-Term 

Memory (LSTM) networks, a variant of RNNs, have 

proven especially effective in meteorological 

applications due to their ability to overcome vanishing 

gradient problems. LSTMs utilize memory cells and 

gating mechanisms to selectively retain or discard 

information, enabling them to model long-range 

dependencies in weather data (Wang et al., 2018). 

Studies have shown that LSTMs can effectively predict 

temperature trends, seasonal rainfall, and extreme 

weather events by leveraging historical data (Cho et al., 

2014). For example, an LSTM-based model trained on 

historical cyclone data successfully predicted the 

trajectory and intensity of tropical storms in the Indian 

Ocean, outperforming traditional numerical weather 

prediction models (Aghelpour et al., 2020). Such 

findings underscore the potential of LSTMs in 

improving the accuracy of long-term weather forecasts. 

 

Gated Recurrent Units (GRUs), another RNN variant, 

have aso gained popularity for temporal data analysis in 

meteorology. GRUs simplify the architecture of LSTMs 

by using fewer gating mechanisms, making them 

computationally efficient while maintaining 

Figure 6: RNNs for Temporal Data Analysis 
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comparable performance (Gagne et al., 2017). GRU-

based models have been successfully applied to predict 

hourly and daily rainfall, demonstrating their utility in 

capturing short- and medium-term temporal patterns in 

weather data (Baldwin & Dunkerton, 2001). 

Additionally, GRUs have shown promise in multi-

variable forecasting, where the interactions between 

variables such as humidity, temperature, and 

atmospheric pressure are critical for accurate 

predictions (Scher & Messori, 2019). These 

applications highlight the versatility of GRUs in 

addressing diverse meteorological challenges. Despite 

their advantages, the application of RNNs, including 

LSTMs and GRUs, in meteorology faces challenges 

related to data preprocessing and scalability. 

Meteorological datasets often contain missing values 

and noise, which can adversely impact the performance 

of RNN-based models (Zhang & Zhu, 2018). Moreover, 

the high computational cost associated with training 

deep networks on large-scale weather datasets poses a 

barrier to their widespread adoption, particularly in 

resource-constrained regions (Qi & Majda, 2019). 

These challenges necessitate the development of 

efficient preprocessing techniques and optimized 

architectures to enhance the applicability of RNNs in 

meteorology (Irrgang et al., 2021). Nonetheless, the 

demonstrated success of RNN variants in capturing 

temporal dependencies underscores their value in 

advancing weather prediction technologies. 

 Hybrid Deep Learning Models for 

Comprehensive Weather Forecasting 

Hybrid deep learning models have emerged as 

transformative tools in weather forecasting by 

integrating spatial and temporal analysis, significantly 

improving the accuracy of predictions for complex 

meteorological phenomena (Islam & Helal, 2018). 

These models leverage the strengths of Convolutional 

Neural Networks (CNNs) for spatial feature extraction 

and Recurrent Neural Networks (RNNs), particularly 

Long Short-Term Memory (LSTM) networks, for 

capturing temporal dependencies (Helal, 2024). For 

instance, CNN layers process high-resolution satellite 

imagery to identify spatial patterns such as cloud 

formations and precipitation zones, while LSTM layers 

analyze sequential data like temperature and wind speed 

to detect temporal trends, addressing the limitations of 

standalone models and enhancing their effectiveness in 

predicting extreme weather events such as hurricanes 

and floods (Faisal, 2023). The integration of diverse 

datasets, including satellite imagery, atmospheric 

pressure readings, and historical weather data, allows 

hybrid models to provide holistic and reliable 

predictions, making them indispensable in modern 

meteorology, particularly in regions prone to extreme 

weather events (Faisal, 2023). Comparative studies 

further emphasize their advantages, with hybrid models 

demonstrating superior accuracy and robustness in 

forecasting cyclone trajectories, landfall locations, and 

wind intensities compared to single-architecture models 

or traditional numerical weather prediction systems 

(Faisal et al., 2024; Faisal et al., 2024). For example, 

hybrid models reduced prediction errors by 20–30% in 

flood forecasting scenarios and outperformed 

hydrological models in capturing multi-scale variability 

and non-linear interactions (Uddin & Hossan, 2024). 

Despite these advancements, challenges remain, 

particularly regarding computational efficiency and 

scalability, as training hybrid models requires 

significant resources to process multi-modal datasets 

like high-resolution imagery and time-series data 

(Uddin, 2024). Additionally, hybrid models can be 

susceptible to overfitting, especially when trained on 

limited meteorological datasets, though efforts such as 

optimizing architectures and employing regularization 

techniques have shown promise in mitigating these 

issues (Hasan et al., 2024). While their reliance on high-

quality input data and substantial computational 

infrastructure may hinder their adoption in under-

resourced regions, hybrid deep learning models have set 

a new standard for comprehensive weather forecasting 

by successfully integrating spatial and temporal 

analyses to enhance prediction accuracy and provide 

deeper insights into extreme weather phenomena. 

 Trends in Explainable AI for Weather 

Forecasting 

Explainable Artificial Intelligence (XAI) has become 

essential in weather forecasting by addressing the 

"black-box" nature of deep learning models, providing 

insights into their inner workings and increasing 

stakeholder trust. Techniques like SHAP, LIME, and 

saliency maps enhance interpretability by identifying 

key contributing features, such as temperature and wind 

speed, and visualizing critical patterns in predictions 

(Mintoo, 2024). This transparency enables decision-

makers, including policymakers and emergency 

responders, to validate and utilize AI-driven forecasts 
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effectively, improving usability and accountability in 

high-stakes scenarios (Faisal et al., 2024; Mintoo et al., 

2024). XAI applications, such as attention mechanisms 

and ensemble forecasting, make weather predictions 

more accurate and comprehensible, bridging the gap 

between complex algorithms and practical use (Faisal et 

al., 2024; Rahman et al., 2024). Despite challenges like 

balancing interpretability with model complexity and 

computational demands, XAI continues to transform 

weather forecasting by enhancing reliability and 

stakeholder confidence. 

 Integration of multi-modal data sources 

The integration of multi-modal data sources, including 

satellite imagery, weather stations, IoT sensors, and 

numerical models, has become vital in improving the 

accuracy and comprehensiveness of weather forecasts 

by enabling a holistic analysis of atmospheric 

phenomena (Mintoo, 2024). By combining spatial and 

temporal data, multi-modal approaches excel in 

predicting extreme weather events, such as cyclones 

and floods, by leveraging complementary insights from 

diverse datasets (Alam, 2024). However, challenges 

like data interoperability, quality control, and 

computational demands pose barriers, especially in 

resource-constrained regions (Qi & Majda, 2019). 

Advanced algorithms, such as attention-based deep 

learning models, help address these issues by 

effectively fusing data from different modalities (Fang 

et al., 2021). Efforts to enhance data-sharing initiatives 

and harmonize formats remain critical for fully realizing 

the potential of multi-modal integration in meteorology 

(Waqas et al., 2024). 

3 METHOD 

This study adhered to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure a systematic, transparent, and 

rigorous review process. The methodology was carried 

out in distinct steps, as detailed below: 

 Identification of Relevant Articles 

The first step involved an exhaustive search for relevant 

articles from established databases, including Scopus, 

Web of Science, IEEE Xplore, and Google Scholar. The 

search was conducted using predefined keywords such 

as "extreme weather prediction," "deep learning in 

meteorology," "Convolutional Neural Networks 

(CNNs)," "Recurrent Neural Networks (RNNs)," and 

"multi-modal data integration." Boolean operators (e.g., 

AND, OR) were used to refine search results and ensure 

comprehensive coverage. To maintain the relevance of 

the review, only articles published between 2015 and 

2024 were included. Initially, 652 articles were 

identified during this phase. 

 Screening of Articles 

The screening phase involved applying inclusion and 

exclusion criteria to the identified articles. Inclusion 

criteria included peer-reviewed journal articles, 

conference proceedings, and studies that directly 

focused on AI or deep learning applications in weather 

prediction. Studies unrelated to meteorology, those 

without full-text access, or those published in languages 

other than English were excluded. After applying these 

criteria, the number of articles was reduced to 385. 

Abstracts and titles were reviewed to ensure the 

relevance of the studies, which further narrowed the 

count to 204 articles for eligibility evaluation. 

 Eligibility Assessment 

The eligibility of the remaining 204 articles was 

evaluated based on their methodological rigor, data 

sources, and relevance to the research objectives. Full 

texts were assessed for quality using a checklist that 

included criteria such as clarity in methodology, 

relevance to extreme weather forecasting, and depth of 

analysis. Articles focusing exclusively on numerical 

weather prediction (NWP) without incorporating 

machine learning or multi-modal approaches were 

excluded. After this detailed evaluation, 120 articles 

met the eligibility criteria for inclusion in the final 

review. 

Figure 7: PRISMA guideline adapted for this study 
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 Final Data Inclusion 

Data from the final set of 120 articles were 

systematically extracted using a structured framework. 

Key details, including author names, publication year, 

study objectives, methods, datasets used, and findings, 

were recorded in a summary table. Special emphasis 

was placed on studies employing hybrid deep learning 

models, multi-modal data integration, and explainable 

AI. Articles were categorized by thematic focus, such 

as spatial-temporal analysis, extreme weather event 

forecasting, and data quality issues. This process 

facilitated the synthesis of findings and identification of 

trends, challenges, and knowledge gaps in the literature. 

4 FINDINGS 

The review identified significant advancements in the 

integration of deep learning models for weather 

prediction, with 48 of the 120 reviewed articles 

specifically focusing on the application of 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) for forecasting extreme 

weather events. These studies collectively accumulated 

over 3,500 citations, highlighting the broad acceptance 

and influence of these methods. CNNs were particularly 

effective in processing spatial data, such as satellite 

imagery, while RNNs excelled in analyzing temporal 

patterns in weather datasets. Hybrid models that 

combined these two architectures demonstrated 

superior performance in capturing the complex spatial-

temporal dynamics of extreme weather, emphasizing 

their potential for improving prediction accuracy in 

real-world scenarios. 

The use of multi-modal data integration emerged as a 

key enabler for advancing weather prediction accuracy. 

Approximately 35 studies, accounting for over 2,000 

combined citations, highlighted the importance of 

combining data from diverse sources, including satellite 

imagery, IoT-based sensors, and ground stations. These 

studies underscored how multi-modal approaches 

enabled more comprehensive analysis of weather 

phenomena, such as cyclones and floods. For instance, 

integrating atmospheric pressure data with real-time 

precipitation readings allowed for more accurate and 

timely flood predictions. However, the findings also 

revealed challenges related to data inconsistencies, 

requiring further refinement in data preprocessing and 

model standardization. 

Explainable Artificial Intelligence (XAI) techniques 

have gained traction as critical tools for enhancing the 

interpretability of weather forecasting models, with 22 

reviewed articles emphasizing their importance. 

Collectively cited over 1,500 times, these studies 

demonstrated how XAI methods, such as SHapley 

Additive exPlanations (SHAP) and attention 

mechanisms, improved transparency in predictions. 

Stakeholders, including policymakers and disaster 

management agencies, benefited from models that 

provided clear visualizations and rationales for 

Figure 8: Findings Overview: Studies and Citations in Weather Forecasting Research 
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predictions. The findings highlighted the role of XAI in 

fostering stakeholder trust, ensuring the adoption of AI-

driven systems in high-stakes weather forecasting 

applications. 

Another significant finding was the role of local 

meteorological data in customizing models for specific 

regions, addressed by 28 studies with approximately 

1,800 total citations. These studies illustrated how 

localized data inputs improved prediction accuracy by 

addressing unique regional climatic conditions. For 

example, high-resolution data from urban sensors 

enhanced the modeling of heatwaves, while terrain-

specific data improved flood and landslide forecasting 

in mountainous regions. Despite these advancements, 

challenges related to data availability in developing 

regions were frequently cited, highlighting the need for 

global collaboration to address disparities in 

meteorological infrastructure. 

The findings also revealed computational challenges 

associated with deep learning models, discussed in 20 

articles with over 1,200 citations. These studies noted 

that training and deploying large-scale deep learning 

models required substantial computational resources, 

which posed a barrier for adoption, particularly in 

under-resourced regions. Additionally, issues such as 

overfitting and scalability were highlighted as critical 

limitations that must be addressed to ensure the broader 

applicability of these models. Despite these challenges, 

the findings underscored the transformative potential of 

AI-driven approaches in weather forecasting, 

particularly when paired with advancements in data 

integration and computational efficiency. 

5 DISCUSSION 

The findings of this review align with and extend the 

body of literature on the application of deep learning in 

weather prediction, emphasizing the role of hybrid 

models in improving prediction accuracy. Earlier 

studies demonstrated that standalone Convolutional 

Neural Networks (CNNs) effectively analyze spatial 

data, while Recurrent Neural Networks (RNNs) excel in 

temporal forecasting (Fang et al., 2021). However, this 

review highlights the superior performance of hybrid 

models combining CNNs and RNNs, a development 

noted in recent research. Hybrid architectures address 

the limitations of single-architecture models by 

simultaneously capturing spatial and temporal 

dependencies, which is critical for predicting extreme 

weather events such as typhoons and floods. This 

synthesis corroborates findings by Zscheischler et al. 

(2020), who demonstrated that hybrid models 

outperformed traditional numerical models, and 

underscores their relevance in addressing complex 

weather phenomena. 

The review’s findings on multi-modal data integration 

confirm earlier studies emphasizing the necessity of 

combining diverse datasets for accurate weather 

forecasting. Previous research has identified the 

limitations of relying on single data sources, such as 

satellite imagery or ground-based observations 

(McGovern et al., 2017; Scher, 2018). This review 

supports those conclusions while highlighting 

significant advancements in multi-modal integration 

methods, particularly using deep learning models 

capable of fusing data from IoT sensors, satellite feeds, 

and numerical weather prediction outputs. Flora et al. 

(2021) noted similar benefits in integrating multi-modal 

data for flood prediction, but this review emphasizes 

that data inconsistencies and interoperability challenges 

remain significant barriers. These issues demand further 

refinement in preprocessing techniques and the 

standardization of data formats. 

The findings also reinforce the critical role of 

Explainable Artificial Intelligence (XAI) in enhancing 

the interpretability and trustworthiness of weather 

prediction models. Earlier studies suggested that the 

"black-box" nature of deep learning models limits their 

usability in operational contexts where transparency is 

essential (O'Gorman & Dwyer, 2018). This review 

found strong evidence supporting the use of XAI 

techniques, such as SHapley Additive exPlanations 

(SHAP) and Local Interpretable Model-agnostic 

Explanations (LIME), to improve stakeholder trust and 

decision-making processes. These findings align with 

(Scher & Messori, 2019), who emphasized the 

importance of interpretability for the adoption of AI in 

high-stakes domains. However, the review highlights 

the ongoing need for developing XAI tools that are 

computationally efficient and user-friendly for non-

expert stakeholders. 

The role of localized meteorological data in model 

customization was another significant finding, which 

builds on earlier research demonstrating the importance 

of region-specific data in addressing local climatic 

variations (Lavers & Villarini, 2013; Straaten et al., 

2022). The integration of localized datasets, such as 
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urban temperature and terrain-specific information, was 

shown to improve forecasting accuracy in this review. 

Earlier studies noted similar benefits but often lacked 

detailed insights into how such data could be 

systematically integrated into advanced AI models. 

This review bridges that gap by emphasizing the 

potential of hybrid deep learning models to leverage 

localized inputs for enhanced performance. However, 

persistent challenges in data availability and quality in 

developing regions remain, echoing concerns raised by 

O'Gorman and Dwyer (2018) regarding disparities in 

meteorological infrastructure. 

Finally, the computational challenges associated with 

deep learning models, such as scalability and resource 

intensity, align with earlier studies that noted the 

limitations of deploying these models in resource-

constrained environments (Mundhenk et al., 2018). 

This review adds to the conversation by emphasizing 

the need for optimization techniques, such as transfer 

learning and efficient model architectures, to address 

these barriers. Compared to earlier studies, which 

focused primarily on algorithmic efficiency, this review 

highlights the broader implications of computational 

challenges for equity in weather prediction, particularly 

in under-resourced regions. These findings underscore 

the need for global collaboration and resource-sharing 

initiatives to ensure that advancements in AI-driven 

weather forecasting benefit all regions equitably. 

6 CONCLUSION 

This review highlights the transformative role of deep 

learning in weather prediction, emphasizing the 

advancements made through hybrid models, multi-

modal data integration, and explainable artificial 

intelligence (XAI). By synthesizing findings from 120 

high-quality studies, it is evident that the combination 

of spatial and temporal analysis through hybrid 

architectures has significantly enhanced the accuracy 

and reliability of extreme weather forecasting. The 

integration of multi-modal data sources, including 

satellite imagery, IoT sensors, and ground-based 

observations, has further enabled comprehensive 

analyses of complex weather phenomena, despite 

persistent challenges in data interoperability and 

quality. The incorporation of XAI techniques has 

emerged as a critical factor in fostering trust and 

usability among stakeholders by addressing the 

interpretability issues often associated with deep 

learning models. However, disparities in data 

availability, computational resource constraints, and 

challenges in model scalability continue to hinder the 

equitable application of these technologies, particularly 

in developing regions. While this review underscores 

the immense potential of AI-driven approaches in 

advancing weather forecasting, it also calls for greater 

global collaboration, resource sharing, and innovation 

to overcome existing barriers and ensure the widespread 

benefits of these technologies across diverse contexts. 
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