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 Data imbalance is a pervasive issue in machine learning, where unequal 

class distributions often lead to biased models and poor predictive 

performance, particularly for underrepresented minority classes. This 

systematic review examines a range of strategies employed to address data 

imbalance, encompassing data-level methods, algorithm-level 

techniques, hybrid approaches, and advanced AI-driven solutions. A total 

of 92 peer-reviewed studies were analyzed, providing comprehensive 

insights into the methodologies, applications, and effectiveness of various 

techniques. Data-level approaches, such as SMOTE and its extensions, 

were identified as widely applied but faced challenges in introducing 

noise and redundancy. Algorithm-level methods, including cost-sensitive 

learning and ensemble techniques, demonstrated robust performance but 

required careful parameter tuning and computational resources. Hybrid 

approaches combined the strengths of these strategies, offering enhanced 

accuracy and adaptability for complex imbalance scenarios. Advanced AI 

techniques, such as GANs, VAEs, and deep learning architectures, 

emerged as powerful tools for handling high-dimensional and 

imbalanced datasets but were often constrained by computational 

demands and overfitting risks. The review also identified significant gaps, 

including the lack of standardized evaluation metrics, which hinder the 

comparability of findings across studies. By synthesizing these insights, 

this study provides a foundation for addressing recurring challenges and 

advancing research in mitigating data imbalance across diverse 

applications. 
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1 INTRODUCTION 

Data imbalance is a pervasive issue in machine learning 

(ML), where certain classes are underrepresented 

relative to others, leading to biased learning algorithms 

and suboptimal model performance (Mohammed et al., 

2020). In classification tasks, imbalanced datasets often 

skew model predictions toward the majority class, 

thereby reducing the ability to accurately predict 

minority class instances (Islam et al., 2023). This is 

particularly problematic in critical applications like 

fraud detection, medical diagnostics, and rare event 

prediction, where minority class predictions are of 

paramount importance (Che et al., 2021). Over the 

years, researchers have recognized the detrimental 

effects of imbalanced data and have explored a myriad 

of techniques to address the issue, particularly 

leveraging artificial intelligence (AI) to develop 

innovative solutions (Kumar et al., 2021). AI-based 

methods provide advanced tools for both data 

preprocessing and algorithm enhancement, enabling 

better handling of data imbalance. One of the most 

widely used strategies to address data imbalance 

involves data-level techniques, such as oversampling, 

undersampling, and synthetic data generation 

(Almazroi & Ayub, 2023). Oversampling methods, like 

the Synthetic Minority Oversampling Technique 

(SMOTE), focus on creating synthetic instances for the 

minority class by interpolating between existing data 

points (Islam et al., 2023). Extensions to SMOTE, such 

as Borderline-SMOTE and Adaptive Synthetic 

Sampling (ADASYN), refine this process by focusing 

on hard-to-classify instances near class boundaries 

(Solanki et al., 2021). Undersampling techniques, on 

the other hand, aim to reduce the number of majority 

class instances to achieve balance, but this often leads 

to the loss of potentially valuable information (Zhou et 

al., 2019). Despite their popularity, data-level 

approaches may introduce noise or overfitting, 

particularly in small datasets (Solanki et al., 2021). 

Algorithm-level techniques represent another 

significant avenue for addressing data imbalance by 

modifying learning algorithms to prioritize minority 

class predictions (Jishan et al., 2015). Cost-sensitive 

learning is a prominent method in this category, where 

different misclassification costs are assigned to classes, 

ensuring that the model pays more attention to minority 

class instances (Dastjerdi et al., 2020). This approach 

has been successfully applied in domains like 

healthcare and financial fraud detection, where the costs 

of misclassifying minority class instances can be 

extremely high. Ensemble methods, such as boosting 

and bagging, have also been adapted for imbalanced 

data by incorporating cost-sensitive elements or 

strategic resampling techniques (Mathew & 

Gunasundari, 2021). These ensemble strategies are 

particularly effective in capturing complex data 

distributions and mitigating class imbalance. Moreover, 

hybrid approaches, combining data-level and 

algorithm-level strategies, have emerged as a promising 

solution to address the limitations inherent in individual 

techniques (Talukder et al., 2024; Talukder et al., 2024; 

Wang et al., 2021). For instance, SMOTE integrated 

with cost-sensitive learning has demonstrated enhanced 

performance in imbalanced classification tasks, 

providing a balance between data augmentation and 

algorithmic focus on minority classes (Maldonado et 

al., 2021).  

Furthermore, Hybrid ensemble methods, such as 

SMOTEBoost and EasyEnsemble, effectively combine 

 

Figure 1: Illustration of Undersampling and Oversampling Techniques for Addressing Data Imbalance 

 

 

 

Source: Al-Rahman (2023) 
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resampling techniques with boosting algorithms to 

achieve superior classification accuracy and robustness 

(Bhadra & Kumar, 2022). These methods highlight the 

importance of multifaceted solutions that leverage the 

strengths of multiple approaches to address the 

complexities of imbalanced datasets. Recent 

advancements in artificial intelligence (AI) and deep 

learning have introduced novel approaches, including 

generative models like Variational Autoencoders 

(VAEs) and Generative Adversarial Networks (GANs), 

which enable the creation of high-quality synthetic data 

that captures the variability and complexity of minority 

class distributions (Novikov et al., 2018). Similarly, 

transfer learning, which uses pre-trained models from 

large, balanced datasets, has demonstrated significant 

success in imbalanced learning scenarios, enabling 

effective knowledge transfer in domains with limited 

data (Chamlal et al., 2024; Rahman, 2024). However, 

class imbalance remains a persistent challenge, 

significantly impacting the margin distribution of 

training instances (Li et al., 2021). As shown in Figure 

1, which presents the cumulative margin distribution of 

correctly classified instances using bagging with 

decision trees, class imbalance adversely affects 

classifier confidence. In the balanced dataset, more 

instances achieve higher margin values, indicating 

greater confidence in predictions, whereas imbalanced 

datasets show reduced margins for minority class 

predictions. This disparity is attributed to the 

dominance of majority classes during the learning 

process, resulting in classifier bias and an illusory 

optimization of margin distribution for imbalanced 

datasets. Addressing this issue requires approaches like 

hybrid ensembles and AI-driven techniques to improve 

the margin distribution for minority classes, enhancing 

model fairness and overall performance in imbalanced 

learning tasks. 

Moreover, the issue of data imbalance extends beyond 

technical considerations, impacting the practical 

deployment of machine learning models in various real-

world applications (Simsek et al., 2020). While data-

level, algorithm-level, and hybrid approaches have 

shown promise, their effectiveness often depends on the 

specific characteristics of the dataset and the application 

context (Ahmed et al., 2024; Salman, 2019). For 

example, methods that perform well in high-

dimensional spaces may struggle with small datasets, 

and vice versa (Fahimnia et al., 2015). This variability 

highlights the importance of a tailored approach to 

addressing data imbalance, combining domain 

knowledge with advanced AI techniques (Solanki et al., 

2021). The primary objective of this study is to 

systematically review and synthesize the existing 

literature on AI-driven approaches for addressing data 

imbalance in machine learning. This research aims to 

explore and categorize various strategies, including 

data-level, algorithm-level, and hybrid techniques, 

emphasizing their methodologies, applications, and 

effectiveness across diverse domains. By analyzing 

over 20 peer-reviewed studies, the review seeks to 

provide a comprehensive understanding of how AI can 

mitigate the challenges posed by imbalanced datasets, 

particularly in critical areas such as healthcare, finance, 

and fault detection. Furthermore, the study intends to 

identify the strengths and limitations of these 

approaches, offering insights into their practical 

applicability and guiding researchers and practitioners 

toward informed decision-making in developing robust 

ML models that account for data imbalance. This 

review aspires to serve as a valuable resource for 

advancing research and fostering innovation in AI-

based solutions for machine learning challenges. 

 

 

Figure 2: Margin distribution of correctly classified training 

instances by bagging with both balanced and imbalanced 

versions of data set 

 

 

 

Source: Feng et al. (2018).  
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2 LITERATURE REVIEW 

Addressing data imbalance in machine learning has 

garnered extensive attention in recent years due to its 

critical impact on model performance and real-world 

applicability (Chamlal et al., 2024). A variety of 

approaches have been developed to mitigate this 

challenge, ranging from traditional data preprocessing 

techniques to advanced AI-driven solutions (Bertolino 

et al., 2020). This section systematically examines 

existing literature to provide a structured understanding 

of how AI techniques are employed to tackle data 

imbalance. The review is organized into specific 

thematic areas, focusing on the evolution of strategies, 

their implementation across domains, and the 

comparative effectiveness of various methods. By 

delving into data-level, algorithm-level, and hybrid 

approaches, as well as advancements in deep learning 

and generative methods, this section offers a 

comprehensive perspective on the state of the field. 

 Data Imbalance in Machine Learning 

Data imbalance is a pervasive issue in machine learning 

(ML), characterized by the unequal representation of 

classes in datasets, where one or more classes are 

significantly underrepresented (Almazroi & Ayub, 

2023). This imbalance, often referred to as the "class 

imbalance problem," creates substantial challenges in 

classification tasks, particularly when minority classes 

represent critical outcomes (Mohammed et al., 2020). 

Studies suggest that conventional machine learning 

models tend to prioritize the majority class, leading to 

biased decision boundaries and degraded performance 

for minority class predictions (Islam et al., 2023; Xu et 

al., 2023). For instance, in healthcare applications, such 

as cancer diagnosis, misclassification of minority class 

instances can result in severe consequences (Kumar et 

al., 2021). While various solutions have been proposed, 

the complexity of imbalanced datasets—due to 

overlapping class distributions and small sample 

sizes—demands more nuanced and context-specific 

interventions (Islam et al., 2023). 

Imbalanced datasets pose multifaceted challenges that 

hinder effective learning. Models trained on such 

datasets often fail to generalize, as they predominantly 

learn patterns associated with the majority class while 

ignoring minority class characteristics (Awan et al., 

2019). Metrics such as accuracy exacerbate the issue by 

masking poor performance on minority classes, 

necessitating the use of alternative evaluation metrics 

like F1-score and area under the precision-recall curve 

(Bhadra & Kumar, 2022). Furthermore, small and noisy 

minority class samples increase the risk of overfitting, 

where models memorize specific examples instead of 

learning generalizable patterns (Bounab et al., 2024). 

Critically, existing literature highlights the tension 

between achieving balance and preserving data 

integrity, as oversampling can introduce noise, while 

undersampling risks the loss of valuable information 

(Drummond & Holte, 2003). These limitations 

underscore the need for more sophisticated methods to 

address the nuances of data imbalance effectively (See 

Figure 3). 

Artificial intelligence (AI) has emerged as a 

transformative tool for addressing data imbalance by 

enabling both data-level and algorithm-level 

interventions. Data augmentation techniques like the 

Synthetic Minority Oversampling Technique (SMOTE) 

and its derivatives have demonstrated effectiveness in 

generating synthetic samples for minority classes 

(Bujang et al., 2021). However, critical evaluations 

reveal that while these methods improve minority class 

representation, they often fail to consider inter-class 

relationships and decision boundaries, leading to 

potential overfitting and suboptimal model performance 

(Chauhan & Singh, 2022). Algorithm-level approaches, 

such as cost-sensitive learning, address this by 

Source: Werner de Vargas et al. (2023) 

 

Figure 3: Sampling types for imbalanced data preprocessing 
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incorporating class-weighted loss functions to prioritize 

minority class instances (Femila Roseline et al., 2022). 

Ensemble methods like SMOTEBoost and 

EasyEnsemble have further advanced this field by 

combining sampling techniques with adaptive learning, 

although they remain computationally intensive and 

less scalable for high-dimensional data (Fletcher et al., 

2021). Such critical analyses highlight the strengths and 

persistent limitations of traditional AI-driven solutions. 

Moreover, recent advancements in AI have introduced 

generative and transfer learning methods, which 

address data imbalance through innovative approaches. 

Generative Adversarial Networks (GANs) and 

Variational Autoencoders (VAEs) enable the creation 

of high-quality synthetic data, preserving the statistical 

characteristics of minority classes and addressing some 

of the deficiencies of earlier oversampling techniques 

(Fletcher et al., 2021; Ghavidel et al., 2022; Ghavidel & 

Pazos, 2023). Nonetheless, these methods are not 

without challenges, as GANs are prone to instability 

during training and require extensive tuning to avoid 

generating unrealistic data (Ghorbani & Ghousi, 2020). 

Transfer learning offers an alternative by leveraging 

pre-trained models to improve performance on 

imbalanced datasets, particularly in domains with 

limited data (Gull et al., 2020). While promising, 

transfer learning often requires domain-specific 

adaptations, which can limit its generalizability across 

diverse applications (A. Gupta et al., 2021). Such 

methods underscore the evolving nature of AI-driven 

solutions while revealing gaps in scalability and domain 

transferability that warrant further exploration. 

 Data-Level Techniques for Handling Data 

Imbalance 

Data-level techniques aim to modify the dataset to 

address class imbalance, with oversampling being one 

of the most prominent approaches. Synthetic Minority 

Oversampling Technique (SMOTE) is widely adopted 

to generate synthetic samples for minority classes by 

interpolating between existing data points (Bounab et 

al., 2024). Extensions of SMOTE, such as Borderline-

SMOTE and ADASYN, refine this process by focusing 

on samples near decision boundaries or generating 

adaptive synthetic data based on instance density 

(Kumar & Das, 2021; Taghizadeh et al., 2022). 

Borderline-SMOTE improves model learning by 

emphasizing difficult-to-classify samples, while 

ADASYN dynamically assigns more weight to minority 

instances that are harder to classify, ensuring better 

class representation (Hoodbhoy et al., 2021). Despite 

their effectiveness, these methods often face criticism 

for potentially introducing noise or overlapping 

synthetic samples, which can compromise model 

performance (Sharma et al., 2021). In contrast to 

oversampling, undersampling approaches reduce the 

size of the majority class to achieve balance. Random 

undersampling is a straightforward method that 

removes a subset of majority class instances, while 

informed undersampling selectively removes instances 

that are less representative or redundant (Hoodbhoy et 

al., 2021; Xie et al., 2020).  

While these methods can simplify the dataset and 

improve computational efficiency, they risk discarding 

critical information from the majority class, leading to 

decreased generalization capabilities (Bounab et al., 

2024). Informed undersampling methods, such as 

Tomek Links and Edited Nearest Neighbor (ENN), 

attempt to mitigate this by identifying and removing 

noisy or borderline instances, thus enhancing decision 

boundary clarity (Ghavidel et al., 2022). However, 

these methods remain dataset-specific and may require 

significant preprocessing efforts to achieve optimal 

results. SMOTE generates synthetic samples by 

interpolating between existing minority class samples.  

The algorithm for SMOTE can be described as follows: 

𝑥new = 𝑥𝑖 + λ ⋅ (𝑥𝑘 − 𝑥𝑖),  λ ∈ [0,1] 

In addition, hybrid sampling techniques combine 

oversampling and undersampling approaches to 

leverage their respective strengths while minimizing 

their weaknesses. These methods aim to enhance class 

representation without overfitting or information loss 

Figure 4: Balancing Data Imbalance Techniques 
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(Laios et al., 2021). For instance, SMOTE combined 

with Tomek Links integrates synthetic sample 

generation with the removal of noisy or overlapping 

instances, creating a balanced yet clean dataset 

(Isangediok & Gajamannage, 2022). Another hybrid 

method, SMOTEENN, further improves this by 

incorporating ENN, which refines decision boundaries 

through additional noise removal (Raghavan & Gayar, 

2019). These hybrid strategies have demonstrated 

superior performance in domains such as healthcare and 

fraud detection, where both class representation and 

data integrity are critical (Isangediok & Gajamannage, 

2022). However, their computational complexity and 

sensitivity to parameter tuning remain notable 

limitations. Critical analyses of these data-level 

techniques suggest that while they offer practical 

solutions to data imbalance, their effectiveness is highly 

context-dependent. Oversampling methods like 

SMOTE and its variants excel in augmenting minority 

class samples but require careful implementation to 

avoid generating redundant or irrelevant data points 

(Gupta et al., 2021; Isangediok & Gajamannage, 2022). 

Conversely, undersampling approaches are efficient in 

reducing dataset size but are prone to discarding 

potentially valuable information from the majority class 

(Sharma et al., 2021). Hybrid approaches strike a 

balance between these extremes, yet their success 

hinges on the careful integration of oversampling and 

undersampling components (Zeineddine et al., 2021). 

Collectively, these techniques demonstrate the 

importance of tailored strategies in addressing data 

imbalance across diverse application domains. 

 Algorithm-Level Approaches 

Cost-sensitive learning is a prominent algorithm-level 

approach to handling data imbalance, where models are 

trained by assigning weighted penalties to 

misclassifications of minority class instances. This 

strategy ensures that the learning algorithm places 

greater emphasis on the minority class, thereby 

addressing the bias introduced by imbalanced datasets 

(Ghavidel et al., 2022). Cost-sensitive decision trees 

and neural networks have been extensively studied for 

their ability to adapt to class imbalance by modifying 

the loss function to incorporate class-specific costs 

(Laios et al., 2021). Studies show that cost-sensitive 

approaches can significantly improve minority class 

prediction without altering the original dataset, making 

them particularly suitable for sensitive applications 

such as fraud detection and medical diagnostics (Gupta 

et al., 2021; Hoodbhoy et al., 2021; Laios et al., 2021). 

However, these methods often require careful tuning of 

cost parameters, which can vary across datasets and 

application domains (Roseline et al., 2022). Ensemble 

learning methods, particularly boosting techniques, 

have proven effective in tackling imbalanced data by 

focusing on the iterative refinement of weak classifiers. 

AdaBoost, one of the earliest boosting methods, adapts 

to class imbalance by reweighting misclassified 

instances to ensure they receive greater attention in 

subsequent iterations (Ghorbani & Ghousi, 2020). 

SMOTEBoost, an extension of AdaBoost, incorporates 

synthetic oversampling techniques like SMOTE into the 

boosting framework, enabling the model to better 

capture the minority class distribution (Raghavan & 

Gayar, 2019). Research highlights that while boosting 

methods effectively improve minority class prediction, 

they are computationally intensive and may overfit 

noisy datasets (Sun et al., 2007). Despite these 

challenges, boosting methods remain a popular choice 

due to their adaptability and effectiveness across 

diverse applications. Given a dataset 𝑆 with cost 

weights 𝐶minority and 𝐶majority , this algorithm calculates 

a weighted impurity metric (e.g., Gini index or entropy) 

at each node to evaluate potential splits. The weighted 

impurity is computed as: 

Weighted Impurity = ∑𝐶𝑖

𝑘

𝑖=1

⋅ 𝑝𝑖 ⋅ (1 − 𝑝𝑖) 

where  𝐶𝑖 is the cost weight, and 𝑝𝑖 is the proportion of 

class i. The split that minimizes the weighted impurity 

is selected. The process continues recursively until 

stopping criteria, such as a maximum tree depth or 

minimum number of samples per leaf, are met. The 

output is a trained cost-sensitive decision tree that 

prioritizes the minority class based on the assigned 

costs. Moreover, bagging methods, another class of 

ensemble techniques, address data imbalance by 

creating multiple subsets of the training data and 

building independent classifiers on these subsets (Xu et 

al., 2023). EasyEnsemble is a notable bagging method 

designed specifically for imbalanced datasets, where 

subsets of the majority class are randomly 

undersampled and combined with the full minority class 

to train individual classifiers (Xie et al., 2020). 
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Similarly, BalanceCascade employs an iterative 

bagging approach, selectively undersampling majority 

class instances based on their classification 

performance in earlier iterations (Ahsan et al., 2021). 

These methods have been shown to reduce the risk of 

overfitting and improve generalization by leveraging 

the diversity of the ensemble. However, bagging 

methods can struggle with extremely imbalanced 

datasets where the minority class is too small to 

construct effective training subsets (Zeineddine et al., 

2021). Critical evaluations of algorithm-level 

approaches suggest that their effectiveness is highly 

dependent on the dataset and application context. Cost-

sensitive learning excels in scenarios where modifying 

the dataset is impractical, but its reliance on parameter 

tuning can limit its scalability (Ghavidel et al., 2022). 

Boosting methods, while powerful, are computationally 

expensive and may amplify noise in imbalanced 

datasets (Raghavan & Gayar, 2019). Bagging 

techniques like EasyEnsemble and BalanceCascade 

offer robust solutions for certain imbalanced scenarios 

but are less effective when the minority class is 

excessively small (Isangediok & Gajamannage, 2022). 

These findings emphasize the importance of selecting 

algorithm-level techniques that align with the specific 

characteristics of the dataset and the predictive goals of 

the application. 

 Hybrid Approaches 

Hybrid approaches combine data preprocessing 

methods with cost-sensitive algorithms to leverage the 

strengths of both techniques while addressing their 

respective limitations (Che et al., 2021). These methods 

aim to enhance the representation of minority classes 

through data-level interventions, such as oversampling 

or undersampling, while simultaneously employing 

cost-sensitive algorithms to prioritize minority class 

predictions (Kumar et al., 2021). For example, 

combining SMOTE with cost-sensitive learning enables 

the generation of synthetic samples for the minority 

class and integrates these into a model trained with 

class-weighted loss functions (Islam et al., 2023). This 

dual strategy has shown improved performance in 

critical applications, such as medical diagnosis and 

credit risk analysis, where accurate minority class 

predictions are essential (Wiharto et al., 2016). 

However, these hybrid methods require careful 

calibration to balance the effects of synthetic data 

generation and cost-sensitive training, as excessive 

focus on either can lead to overfitting or 

underrepresentation. Integration of ensemble methods 

with sampling techniques is another prominent hybrid 

approach that has gained traction in addressing data 

imbalance. SMOTEBoost, for instance, combines the 

oversampling capabilities of SMOTE with the adaptive 

learning framework of AdaBoost to enhance minority 

class prediction (Almazroi & Ayub, 2023). Similarly, 

EasyEnsemble and BalanceCascade utilize bagging 

techniques alongside strategic undersampling to create 

multiple balanced subsets of data, improving model 

robustness and reducing bias toward the majority class 

(Wiharto et al., 2016). These methods capitalize on the 

ensemble framework's ability to aggregate diverse 

classifiers, yielding more generalized models capable of 

handling imbalanced datasets effectively. Despite their 

success, ensemble-based hybrid methods are 

computationally intensive and may not scale well for 

large or high-dimensional datasets (Mohammed et al., 

2020). 

Hybrid approaches have also explored more advanced 

integrations, such as combining generative models with 

cost-sensitive or ensemble techniques. Variational 

Autoencoders (VAEs) and Generative Adversarial 

Networks (GANs) have been employed to generate 

high-quality synthetic samples, which are then used 

within ensemble frameworks or cost-sensitive 

classifiers (Ding et al., 2023; Feng et al., 2020; Liu et 

al., 2014). This integration enables the creation of 

realistic synthetic data that preserves minority class 

characteristics while benefiting from the adaptive 

learning capabilities of ensemble methods. For 

example, SMOTE-GAN and GANBoost integrate 

GAN-generated synthetic samples with boosting 

algorithms, resulting in improved classification 

performance across various domains, including 

healthcare and fraud detection (Lu et al., 2015). 

However, these methods are not without limitations, as 

GAN-based approaches often require extensive 

computational resources and may suffer from instability 

during training (Wang & Yao, 2013). Critical 

evaluations of hybrid approaches reveal that while they 

provide a versatile framework for addressing data 

imbalance, their effectiveness is highly dependent on 

the specific configuration of preprocessing, cost-

sensitive learning, and ensemble methods. Studies show 

that the integration of oversampling with cost-sensitive 

algorithms enhances minority class representation but 

may introduce synthetic noise if not properly calibrated 
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(Lu et al., 2015; Sedighi-Maman & Mondello, 2021). 

Ensemble-based hybrids, while robust and adaptive, 

often require significant computational resources, 

limiting their scalability for real-time applications or 

large-scale datasets (Feng et al., 2020). These findings 

emphasize the importance of tailoring hybrid 

approaches to the dataset and application domain, 

ensuring that the combined strengths of data 

preprocessing, cost-sensitive learning, and ensemble 

methods are effectively harnessed. 

 Advanced AI Techniques 

Generative models have emerged as powerful tools for 

addressing data imbalance through the creation of 

synthetic data that preserves the statistical 

characteristics of minority classes (Ma et al., 2012). 

Variational Autoencoders (VAEs) and Generative 

Adversarial Networks (GANs) are two widely used 

approaches in this domain. VAEs generate synthetic 

data by learning a probabilistic latent representation of 

the input data, enabling the creation of new samples that 

closely align with the minority class distribution (Qiu et 

al., 2019). GANs, on the other hand, employ a dual 

network architecture—comprising a generator and a 

discriminator—that iteratively refines synthetic data to 

mimic real data distributions (Ali et al., 2024; Oliveira 

& Berton, 2023). Applications of GANs, such as 

SMOTE-GAN and CTGAN, have demonstrated 

improved minority class predictions in healthcare, fraud 

detection, and natural language processing (Khan et al., 

2019). Despite their success, generative models often 

require extensive computational resources and fine-

tuning to avoid issues like mode collapse or unrealistic 

data generation (Deb et al., 2024; Hall et al., 2012). 

Transfer learning offers another advanced approach to 

mitigating data imbalance by leveraging pre-trained 

models to address small and imbalanced datasets. 

Instead of training models from scratch, transfer 

learning adapts models trained on large, balanced 

datasets to new, imbalanced tasks, significantly 

improving learning efficiency and performance 

(Maman & Mondello, 2021). This technique is 

particularly effective in domains where acquiring 

balanced datasets is challenging, such as medical 

imaging and remote sensing (Sun et al., 2012). Fine-

tuning pre-trained convolutional neural networks 

(CNNs), such as ResNet and VGG, has been shown to 

enhance classification accuracy in imbalanced 

scenarios by transferring learned features from large-

scale datasets like ImageNet (Khan et al., 2019; Delwar 

et al., 2024). However, the success of transfer learning 

heavily depends on the similarity between the source 

and target domains, with domain mismatch potentially 

limiting its effectiveness (Kitchenham et al., 2009). 

Deep learning architectures, such as CNNs and 

Recurrent Neural Networks (RNNs), have also been 

adapted to handle data imbalance effectively (Lu et al., 

2015; Qiu et al., 2019). CNNs, with their hierarchical 

feature extraction capabilities, are particularly well-

suited for imbalanced image datasets, as they can learn 

discriminative features of minority classes even in the 

presence of dominant majority classes (Oliveira & 

Berton, 2023). Techniques such as class-weighted loss 

functions and data augmentation are often integrated 

into CNN training to prioritize minority class 

predictions (Sekeroglu et al., 2021). RNNs, designed to 

handle sequential data, have been applied to imbalanced 

text and time-series datasets, employing strategies like 

attention mechanisms and adaptive learning rates to 

improve minority class recognition (Albreiki et al., 

2021). Despite their adaptability, deep learning models 

are prone to overfitting on imbalanced datasets, 

 

Figure 5: Proposed Hybrid model by Ding et al. (2023) 
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particularly when the minority class samples are sparse 

(Kitchenham et al., 2009). Critical evaluations of these 

advanced AI techniques highlight their potential and 

limitations in addressing data imbalance. While 

generative models such as GANs and VAEs offer 

unparalleled capabilities in creating realistic synthetic 

data, their reliance on extensive computational 

resources and hyperparameter tuning limits their 

accessibility for resource-constrained settings (Hall et 

al., 2012). Transfer learning provides a practical 

solution for small datasets, but domain mismatch can 

restrict its applicability across diverse fields (Albreiki et 

al., 2021). Deep learning architectures, including CNNs 

and RNNs, demonstrate remarkable performance in 

extracting features from complex datasets, yet their 

effectiveness hinges on careful integration with 

techniques like class weighting and data augmentation 

to avoid overfitting (Hosseini et al., 2019). These 

findings underscore the importance of tailoring 

advanced AI techniques to the unique characteristics of 

imbalanced datasets for optimal performance. 

 Comparative Analysis of Approaches 

Data-level methods and algorithm-level methods each 

present distinct strengths and limitations when 

addressing data imbalance (Intayoad et al., 2019). Data-

level methods, such as oversampling and 

undersampling, are straightforward and versatile, 

offering the ability to modify datasets before applying 

standard machine learning algorithms (Dixon-Woods et 

al., 2005). Techniques like SMOTE effectively enhance 

minority class representation by generating synthetic 

samples, improving model performance across various 

domains, including healthcare and finance (Mduma et 

al., 2019). However, these methods can introduce noise 

or redundancy, potentially compromising model 

generalizability (Mariscal et al., 2010). Algorithm-level 

methods, such as cost-sensitive learning and ensemble 

techniques, address imbalance within the model 

training process by adjusting loss functions or 

strategically reweighting instances (Rathore & Kumar, 

2017). While these methods maintain the integrity of the 

original data, they often require intricate parameter 

tuning and are computationally intensive, which can 

limit their applicability in large-scale scenarios 

(Sekeroglu et al., 2021). In addition, hybrid solutions, 

which combine data-level and algorithm-level 

approaches, have demonstrated superior efficacy in 

handling complex imbalance scenarios. For instance, 

SMOTE integrated with cost-sensitive learning 

addresses both the representation of minority classes 

and the model’s sensitivity to class imbalance, yielding 

 

Figure 6: Sumamry of Advanced AI Techniques 
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enhanced classification accuracy and robustness (Felix 

& Lee, 2019). Hybrid ensemble methods, such as 

SMOTEBoost and EasyEnsemble, combine synthetic 

oversampling with boosting or bagging techniques, 

resulting in improved minority class predictions while 

reducing overfitting risks (Kitchenham et al., 2009). 

However, hybrid approaches can be computationally 

demanding and sensitive to the specific configurations 

of their components, requiring careful calibration to 

avoid introducing biases or inconsistencies (Mduma et 

al., 2019). These findings underscore the potential of 

hybrid methods to balance the strengths of data-level 

and algorithm-level techniques while addressing their 

individual shortcomings. The performance of these 

approaches varies significantly across different 

domains, emphasizing the importance of application-

specific customization. In medical diagnostics, where 

accurate identification of rare conditions is critical, 

oversampling combined with deep learning 

architectures has been shown to improve sensitivity 

while maintaining precision (Shen & Chen, 2020). In 

fraud detection, cost-sensitive ensemble methods have 

been effective in prioritizing minority class predictions 

without sacrificing overall model accuracy (Hall et al., 

2012). Similarly, in industrial applications like fault 

detection, hybrid solutions leveraging generative 

models and cost-sensitive learning have achieved high 

classification performance, even in highly imbalanced 

datasets (Mariscal et al., 2010). These domain-specific 

applications highlight the adaptability and versatility of 

different approaches when tailored to the unique 

characteristics of the data and the task. 

Performance metrics play a critical role in evaluating 

the efficacy of these approaches, as traditional accuracy 

metrics often fail to capture the true performance on 

imbalanced datasets (Sekeroglu et al., 2021). Metrics 

such as precision, recall, F1-score, and area under the 

precision-recall curve (AUC-PR) provide a more 

comprehensive assessment of model effectiveness, 

particularly in minority class predictions (Albreiki et 

al., 2021). Data-level methods typically improve recall 

but may sacrifice precision due to synthetic noise, 

whereas algorithm-level approaches strike a balance 

between the two but may fall short in extremely 

imbalanced scenarios (Felix & Lee, 2019). Hybrid 

methods often outperform individual approaches by 

achieving higher F1-scores and AUC-PR values, 

reflecting their ability to optimize minority class 

predictions while maintaining overall model 

performance (Albreiki et al., 2021; Ding et al., 2023). 

These metrics underscore the necessity of robust 

evaluation frameworks to compare and refine strategies 

for handling imbalanced data effectively. 

 Research Gaps 

The reviewed studies provide consolidated insights into 

the effectiveness of various techniques for addressing 

data imbalance in machine learning, yet certain 

challenges persist across methodologies (de Oliveira & 

Berton, 2023; Kitchenham et al., 2009; Pachouly et al., 

2022). Data-level techniques, such as SMOTE and its 

variants, have demonstrated significant improvements 

in class representation by generating synthetic data 

(Albreiki et al., 2021; Hosseini et al., 2019). However, 

 

Figure 7: Comparative Analysis of Approaches 

 

 

 

https://journal.aimintlllc.com/index.php/FAET
https://journal.aimintlllc.com/index.php/FAET
https://journal.aimintlllc.com/index.php/FAET
https://doi.org/10.70937/faet.v2i01.57
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_23
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_23
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_44
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_58
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_58
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_75
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_33
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_33
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_55
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_73
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_3
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_3
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_23
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_3
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_20
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_18
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_18
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_44
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_62
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_62
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_3
file:///C:/Users/LENOVO/Desktop/On%20going/New%20folder%20(2)/Apu%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_35


Frontiers in Applied Engineering and Technology 
Page No: 58-77 

68 | P a g e  

 

 

these methods often introduce noise and redundancy, 

particularly when synthetic samples fail to adequately 

reflect the decision boundaries of minority classes 

(Kitchenham et al., 2009). Similarly, undersampling 

methods risk discarding valuable majority class data, 

reducing the overall dataset quality and potentially 

leading to biased decision boundaries (Intayoad et al., 

2019). While hybrid approaches attempt to mitigate 

these limitations, their reliance on careful parameter 

tuning and computational intensity remains a recurring 

challenge (Mduma et al., 2019). These observations 

highlight the need for adaptive, scalable techniques that 

balance class representation without compromising data 

integrity or computational efficiency. Algorithm-level 

approaches, including cost-sensitive learning and 

ensemble methods, have been widely praised for their 

ability to address imbalance without altering the dataset 

(Rathore & Kumar, 2017; Shen & Chen, 2020). 

However, these techniques are not immune to 

limitations. Cost-sensitive algorithms often require 

meticulous adjustment of class weights, which can vary 

significantly between datasets and application domains 

(Ding et al., 2023; Kennedy et al., 2024). Ensemble 

methods like SMOTEBoost and EasyEnsemble, while 

robust, are computationally demanding and may overfit 

minority class instances, particularly in noisy datasets 

(Prasad et al., 2015; Rathore & Kumar, 2017). These 

recurring challenges suggest that more research is 

needed to develop ensemble frameworks that are both 

computationally efficient and resistant to overfitting. 

Additionally, few studies have explored the integration 

of cost-sensitive learning with advanced ensemble 

techniques, representing a notable gap in the literature. 

Advanced AI techniques, such as generative models and 

deep learning architectures, offer promising avenues for 

addressing data imbalance but are not without 

shortcomings (Tawfik et al., 2019). Generative 

Adversarial Networks (GANs) and Variational 

Autoencoders (VAEs) enable the creation of realistic 

synthetic data, yet their training processes are prone to 

instability and require extensive computational 

resources (Laradji et al., 2015; Siers & Islam, 2015). 

Similarly, deep learning models like Convolutional 

Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) have shown strong performance in 

imbalanced scenarios but are often susceptible to 

overfitting due to limited minority class data (Bowes et 

al., 2017; Jayanthi & Florence, 2018). Moreover, the 

reliance on large-scale datasets for pre-training transfer 

learning models limits their applicability in domains 

with highly specific or proprietary data (Kesavaraj & 

Sukumaran, 2013). These gaps underscore the need for 

more adaptive and resource-efficient AI-driven 

solutions capable of handling imbalanced datasets 

without requiring extensive computational overhead. In 

addition, a recurring challenge across methodologies is 

the lack of standardized evaluation metrics and 

frameworks for assessing the performance of models on 

imbalanced datasets. While metrics such as F1-score, 

precision, recall, and AUC-PR are commonly used, 

there is no consensus on which metrics best capture the 

nuances of imbalanced learning scenarios (Wang et al., 

2021). Additionally, domain-specific requirements 

further complicate evaluation, as the importance of false 

positives versus false negatives varies across 

applications (Chaplot et al., 2019). This lack of 

standardization hinders the comparability of techniques 

and limits their generalizability to diverse real-world 

applications. Addressing these gaps will require a 

concerted effort to establish robust benchmarks and 

develop methodologies that are both domain-agnostic 

and adaptable to the unique demands of imbalanced 

learning scenarios (Wang et al., 2021). 

3 METHOD 

This study adhered to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure a structured, transparent, and 

rigorous approach to reviewing the literature. The 

PRISMA framework facilitated a comprehensive 

exploration of existing studies on addressing data 

imbalance in machine learning. The methodology was 

executed in distinct steps, each outlined below: 

 Identification of Relevant Studies 

The first step involved identifying articles that 

addressed data imbalance in machine learning. A 

comprehensive search was conducted across multiple 

databases, including IEEE Xplore, SpringerLink, 

ScienceDirect, and Google Scholar. The search used 

specific keywords and Boolean operators, such as “data 

imbalance,” “machine learning,” “SMOTE,” “cost-

sensitive learning,” “hybrid approaches,” “deep 

learning,” and “GANs.” The search was restricted to 

peer-reviewed journal articles and conference 

proceedings published between 2010 and 2024. A total 
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of 458 articles were retrieved during this phase, 

ensuring broad coverage of the relevant literature. 

 Screening and Eligibility 

In the screening phase, duplicate records were removed, 

reducing the dataset to 372 unique articles. Titles and 

abstracts were then reviewed against predefined 

inclusion and exclusion criteria. Inclusion criteria 

included studies focused on techniques to address data 

imbalance in machine learning, those employing real-

world datasets, and articles written in English. 

Exclusion criteria omitted opinion pieces, reviews, and 

studies unrelated to machine learning. After applying 

these criteria, 165 articles were deemed potentially 

eligible for further evaluation. 

 Full-Text Review and Inclusion 

The full texts of the 165 shortlisted articles were 

thoroughly reviewed to ensure relevance and alignment 

with the study’s objectives. Studies were assessed for 

methodological rigor, novelty, and practical application 

of techniques. Following this review, 92 articles were 

included in the final analysis. These studies covered a 

diverse range of approaches, including data-level, 

algorithm-level, hybrid methods, and advanced AI 

techniques like GANs and transfer learning. 

 Data Extraction and Synthesis 

Data from the 92 included studies were systematically 

extracted using a predefined extraction form. Key 

information captured included study objectives, 

methodologies, datasets, techniques employed, 

evaluation metrics, and results. The extracted data were 

synthesized to identify recurring themes, compare the 

efficacy of different methods, and highlight critical 

research gaps. This synthesis formed the basis for the 

comprehensive discussion of data imbalance techniques 

and their applications across domains. 

 

4 FINDINGS 

The review identified data-level techniques as the most 

extensively researched and applied methods for 

addressing data imbalance in machine learning. Among 

the 92 articles reviewed, 45 focused on data-level 

strategies, collectively garnering over 2,300 citations. 

These methods, including SMOTE and its extensions 

such as Borderline-SMOTE and ADASYN, were 

widely recognized for their ability to enhance the 

representation of minority classes by generating 

synthetic samples. These techniques were particularly 

prevalent in critical domains such as healthcare and 

finance, where accurate minority class predictions have 

significant real-world implications. Many studies 

highlighted the success of these approaches in 

improving model recall and sensitivity for minority 

classes, enabling more balanced learning outcomes. 

However, a recurring challenge identified across 

several studies was the introduction of noise and 

redundancy when synthetic samples did not accurately 

reflect the true distribution of the data. Such limitations 

were noted in small or highly skewed datasets, where 

excessive synthetic samples could distort decision 

boundaries and hinder model performance. 

Algorithm-level techniques, such as cost-sensitive 

learning and ensemble methods, were examined in 30 

of the reviewed articles, with a combined citation count 

exceeding 1,800. These methods focused on modifying 

the training process rather than altering the dataset. 

Cost-sensitive learning emerged as a highly effective 

strategy for prioritizing minority class predictions by 

assigning weighted penalties to misclassifications, 

ensuring that models focus adequately on 

underrepresented classes. Ensemble methods like 

SMOTEBoost and EasyEnsemble combined 

resampling techniques with adaptive learning 

frameworks, delivering robust performance across 

imbalanced datasets. These approaches were 

particularly impactful in applications such as fraud 

detection and predictive maintenance, where precision 

in minority class predictions is critical . Despite their 

effectiveness, many studies emphasized the  

Figure 8: PRISMA framework followed for this study 
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computational complexity and reliance on parameter 

tuning inherent to these methods. Such challenges were 

highlighted as potential barriers to their scalability and 

implementation in real-time systems or large datasets. 

Hybrid approaches, which integrate data preprocessing 

methods with algorithm-level techniques, were 

explored in 20 articles and received over 1,000 

citations. These approaches effectively combined the 

strengths of both strategies, mitigating individual 

weaknesses to deliver improved performance in 

handling complex imbalance scenarios. For instance, 

hybrid solutions that integrated SMOTE with cost-

sensitive learning or ensemble methods demonstrated 

superior accuracy and robustness across various 

domains. These methods proved particularly 

advantageous in high-stakes applications, such as 

medical diagnostics and industrial fault detection, 

where both sensitivity (correct identification of 

minority classes) and specificity (avoidance of false 

positives) are critical. However, the computational 

demands of hybrid techniques were a consistent theme 

in the reviewed literature. Many studies noted that 

achieving the desired balance between model 

complexity and performance required significant effort 

in parameter tuning, which could limit their practicality 

in resource-constrained environments. 

Advanced AI techniques, including generative models 

and deep learning architectures, were discussed in 15 of 

the reviewed articles, with a combined citation count of 

approximately 900. Generative Adversarial Networks 

(GANs) and Variational Autoencoders (VAEs) were 

recognized as groundbreaking tools for generating 

synthetic data that accurately reflects the statistical 

characteristics of minority classes. These methods were 

particularly effective in domains with high-dimensional 

data, such as medical imaging, natural language 

processing, and financial risk modeling. Deep learning 

models, such as Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), were 

also highlighted for their ability to extract complex 

patterns from imbalanced datasets when paired with 

strategies like class weighting and data augmentation. 

Despite these strengths, advanced AI techniques were 

consistently associated with high computational costs 

and extensive parameter tuning requirements. These 

challenges limited their accessibility for small-scale 

applications or resource-constrained environments, 

underscoring the need for more efficient 

implementations. The review further identified gaps in 

evaluation frameworks and performance metrics used to 

assess the efficacy of techniques for addressing data 

imbalance. While traditional metrics like accuracy were 

frequently reported, 30 articles highlighted the 

inadequacy of such metrics in reflecting the true 

performance of models on imbalanced datasets. 

Alternative metrics, including precision, recall, F1-

score, and area under the precision-recall curve (AUC-

PR), were identified as more suitable for evaluating 

minority class predictions. However, a significant 

limitation across the reviewed studies was the lack of 

standardization in metric selection and reporting, 

making it difficult to compare results across different 

methodologies. This inconsistency in evaluation 

practices highlighted the need for robust benchmarks 

and standardized reporting protocols to ensure the 

reliability and generalizability of findings. Establishing 

such frameworks would enable more meaningful 

comparisons and facilitate the development of more 

 

Figure 9: Findings on the Citations Over Time by Technique Type 
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effective solutions for addressing data imbalance in 

machine learning. 

5 DISCUSSION 

The findings of this systematic review reveal significant 

advancements in addressing data imbalance in machine 

learning, with data-level techniques continuing to 

dominate the research landscape. SMOTE and its 

extensions were identified as the most frequently 

applied methods, a trend consistent with earlier studies, 

such as Chen et al.(2019), which first introduced 

SMOTE. Recent studies, however, emphasize 

refinements like Borderline-SMOTE and ADASYN, 

which target samples near decision boundaries to 

improve model generalizability. While these 

advancements address limitations identified by earlier 

research, such as the potential for noise introduction in 

synthetic data, they still face challenges in maintaining 

data integrity. The reliance on data-level techniques in 

critical domains such as healthcare and finance 

underscores their practicality, as they require minimal 

modifications to existing machine learning pipelines. 

However, these methods continue to struggle with 

scalability and applicability in high-dimensional 

datasets, echoing concerns from earlier studies like 

Mathew and Gunasundari (2021). 

Algorithm-level techniques, particularly cost-sensitive 

learning and ensemble methods, demonstrated 

significant potential in this review, aligning with earlier 

findings that highlighted their capacity to address data 

imbalance without altering the dataset (Chaplot et al., 

2019). Cost-sensitive learning, for instance, has proven 

effective in balancing model performance by 

incorporating class-specific weights into loss functions. 

Ensemble methods, such as SMOTEBoost and 

EasyEnsemble, extend these capabilities by combining 

adaptive learning frameworks with resampling 

strategies, yielding robust results across diverse 

applications. However, these methods face criticisms 

similar to those identified by Wang et al. (2021), 

including high computational demands and sensitivity 

to parameter tuning. The computational overhead of 

these methods limits their adoption in real-time systems 

and large-scale datasets, a challenge that remains 

unresolved despite their proven effectiveness in 

experimental settings. 

Hybrid approaches, which integrate data-level and 

algorithm-level strategies, emerged as powerful tools 

for handling complex imbalance scenarios. These 

methods mitigate the individual weaknesses of their 

components, offering enhanced performance compared 

to standalone techniques. For example, hybrid solutions 

combining SMOTE with cost-sensitive learning align 

with earlier studies by Chawla et al., (2002), which 

highlighted the synergy of integrating oversampling 

techniques with adaptive algorithms. However, the 

review also identified challenges consistent with prior 

findings, such as the computational intensity of hybrid 

methods and their reliance on meticulous parameter 

tuning. The successful application of these approaches 

in high-stakes domains like medical diagnostics and 

industrial fault detection underscores their practical 

relevance, but their adoption in resource-constrained 

environments remains limited. 

Advanced AI techniques, including generative models 

and deep learning architectures, represent the forefront 

of innovation in addressing data imbalance. The 

findings align with earlier studies, such as Rtayli and 

Enneya (2020), which introduced GANs as a 

transformative tool for synthetic data generation. 

Variational Autoencoders (VAEs) and GANs have 

since been widely applied in creating realistic minority 

class samples, demonstrating their utility in domains 

with high-dimensional data, such as medical imaging 

and natural language processing. However, consistent 

with earlier research, the training instability and 

computational demands of these models pose 

significant barriers to their practical implementation. 

Similarly, while deep learning architectures like CNNs 

and RNNs excel in extracting complex patterns from 

imbalanced datasets, they remain susceptible to 

overfitting when minority class samples are sparse, a 

limitation highlighted in studies such as Mathew and 

Gunasundari, (2021). 

The review also revealed gaps in evaluation practices, 

particularly the lack of standardized metrics for 

assessing model performance on imbalanced datasets. 

While metrics such as precision, recall, F1-score, and 

AUC-PR were identified as more appropriate than 

traditional accuracy measures, the inconsistency in their 

application across studies echoes concerns raised by 

Maldonado et al. (2021). This inconsistency limits the 

comparability of findings and hinders the establishment 
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of benchmarks for evaluating new techniques. The 

findings underscore the need for a unified evaluation 

framework to ensure that advancements in addressing 

data imbalance can be reliably assessed and compared, 

a recommendation that aligns with calls for 

standardization in earlier studies. Another significant 

finding is the domain-specific nature of solutions to data 

imbalance. In healthcare, the focus on recall and 

sensitivity reflects the critical importance of minimizing 

false negatives in diagnosing rare diseases. This 

emphasis aligns with earlier studies, such as those by 

Liang et al. (2019), which highlighted the unique 

requirements of healthcare applications. In contrast, 

financial domains prioritize precision and F1-score to 

balance fraud detection rates with false positives, 

consistent with earlier observations by Wang et al. 

(2021). Similarly, in industrial systems, metrics like 

specificity and mean time between failures (MTBF) are 

prioritized to ensure the reliability of fault detection 

models. These variations underscore the importance of 

tailoring solutions to the specific needs and priorities of 

each domain. In addition, the findings of this review 

highlight the significant progress made in addressing 

data imbalance while also identifying recurring 

challenges that persist despite advancements in 

methodologies. The comparison with earlier studies 

underscores the evolutionary nature of research in this 

area, with newer techniques building on the strengths 

and addressing the limitations of their predecessors. 

However, the challenges of computational demands, 

parameter tuning, and evaluation standardization 

remain pressing issues that require further exploration. 

The insights from this review provide a comprehensive 

understanding of the current state of the field, serving 

as a foundation for future work to address these 

unresolved challenges.. 

6 CONCLUSION 

This systematic review highlights the significant 

progress made in addressing data imbalance in machine 

learning, emphasizing the evolution of techniques 

ranging from traditional data-level methods to advanced 

AI-driven solutions. Data-level strategies, particularly 

SMOTE and its extensions, remain widely utilized for 

their simplicity and effectiveness, while algorithm-level 

approaches, such as cost-sensitive learning and 

ensemble methods, offer robust solutions without 

altering the dataset. Hybrid techniques have proven 

particularly valuable in combining the strengths of these 

methods to tackle complex imbalanced scenarios, 

despite challenges like computational intensity and 

parameter tuning. Advanced AI techniques, including 

GANs, VAEs, and deep learning architectures, 

represent the cutting edge of research, providing 

innovative tools for handling high-dimensional and 

complex datasets. However, consistent issues such as 

computational demands, overfitting risks, and a lack of 

standardized evaluation metrics persist across 

methodologies, limiting their widespread adoption and 

generalizability. Domain-specific applications in 

healthcare, finance, and industrial systems underscore 

the need for tailored solutions that address the unique 

priorities and challenges of each field. Overall, while 

substantial advancements have been made, this review 

identifies critical gaps and recurring challenges that 

must be addressed to develop more effective, scalable, 

and universally applicable methods for mitigating data 

imbalance in machine learning. 
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