
AIM INTERNATIONAL JOURNAL Publisher 
Frontiers in Applied Engineering and Technology , 2025;2(01): 135-163 

DoI: 10.70937/faet.v2i01.70 

135 | P a g e  

 

 

Received: 14thJanuary , 2025  Accepted: 05th March,2025   Published: 07th March,2025 

LEVERAGING AI AND SENSOR TECHNOLOGIES FOR REAL -TIME 

STRUCTURAL HEALTH MONITORING OF IN-SERVICE BRIDGES  

Md Mahfuj Hosen 1 
1Structural Engineer/ Assistant Team leader, American Structural Engineering, P.C. 

Corresponding Email: hosenm67@students.rowan.edu 

Md Mahmud Ullah Sabbir2 

2Master of Information and Communications Technology, Canterbury Institute of Management 

(CIM), Australia 

Email: sabbirs504@gmail.com 

Md Ismail Hossain 3 
3CMT Field Inspector (ECS Mid-Atlantic, LLC) 

Email: ismailhossaingrad@gmail.com 

Mohammad Aman Ullah Sunny4 
4Department of Engineering Management, Lamar University, Texas, USA. 

Email: amanullah6628@gmail.com 

Keywords 
 

ABSTRACT 

Structural Health Monitoring 

(SHM) 

Artificial Intelligence (AI)  

IoT-enabled Sensors 

Predictive Analytics 

Bridge Infrastructure Resiliences 

 

 

 The increasing demand for efficient and proactive bridge maintenance 

solutions has led to the rapid adoption of Artificial Intelligence (AI)-

driven Structural Health Monitoring (SHM) systems, integrating 

machine learning, IoT-enabled sensor networks, computer vision, 

predictive maintenance models, drone-assisted inspections, and 

blockchain-based security frameworks. Traditional bridge inspection 

methods, which rely on manual evaluations and periodic assessments, 

often fail to detect early-stage structural damage, are labor-intensive, and 

incur high operational costs. This study systematically reviewed 75 high-

quality peer-reviewed articles published between 2015 and 2024, 

following the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines, to assess the efficacy, scalability, 

and economic feasibility of AI-based SHM technologies. The findings 

indicate that machine learning algorithms outperform traditional 

inspection techniques, achieving over 90% accuracy in crack and fatigue 

detection, while predictive maintenance models reduce maintenance costs 

by 30–50% by optimizing intervention strategies and minimizing 

emergency repairs. The study further highlights the role of IoT-enabled 

wireless sensor networks and fiber optic sensors, which have improved 

real-time monitoring capabilities, reducing data acquisition time by 65% 

and enabling continuous structural assessments without disrupting 

bridge operations. AI-assisted drone inspections have significantly 

improved damage detection efficiency by 85%, reducing inspection time 

by up to 60%, proving the viability of autonomous UAV-based SHM 

applications. Additionally, blockchain-secured sensor networks have 

been found to enhance data integrity and cybersecurity, reducing data 

breaches by 65% and ensuring tamper-proof sensor-generated records, 

addressing one of the critical security concerns in modern infrastructure 

monitoring. Despite these advancements, the study identifies key 

implementation challenges, including computational costs, data 

interoperability issues, scalability constraints, and regulatory barriers, 
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1 INTRODUCTION 

Bridges serve as critical components of transportation 

networks, facilitating commerce, mobility, and 

economic growth (Moya et al., 2023)). However, a 

significant portion of bridge infrastructure worldwide, 

particularly in the United States, is aging, with many 

structures exceeding their intended design life (Yoon et 

al., 2018). The deterioration of bridge structures poses 

severe risks, including economic losses, traffic 

disruptions, and, most importantly, public safety 

hazards (Agostini & Filippini, 2019). Traditional bridge 

inspection methods rely on periodic visual assessments, 

non-destructive testing techniques, and manual 

evaluations by certified engineers (Prinsloo et al., 

2019). Although these techniques have been widely 

used, their reactive nature, high labor costs, and 

susceptibility to human error necessitate the 

development of advanced monitoring systems (Agostini 

& Filippini, 2019). In response, researchers and 

engineers have increasingly turned to real-time 

structural health monitoring (SHM) systems that 

leverage artificial intelligence (AI) and sensor 

technologies to enhance the accuracy and efficiency of 

bridge maintenance and safety management (Prinsloo et 

al., 2019). The implementation of Internet of Things 

(IoT)-enabled sensors in SHM systems allows for the 

continuous monitoring of key structural parameters 

such as vibration, strain, displacement, and temperature 

fluctuations (Kijewski-Correa et al., 2013). These 

sensors generate vast amounts of real-time data, 

enabling engineers to detect early signs of structural 

distress and schedule maintenance interventions 

accordingly (Lin et al., 2018). Unlike traditional 

inspections, IoT-based monitoring eliminates the need 

for frequent manual assessments, reducing maintenance 

costs while ensuring comprehensive data collection (M. 

J. Alam et al., 2024; Wang et al., 2018). Wireless sensor 

networks (WSNs) have also been employed to enhance 

the reliability of SHM systems, providing a robust 

framework for large-scale bridge surveillance (Arafat et 

al., 2024; Luo et al., 2021). Studies indicate that when 

integrated with AI-driven analytics, sensor-based SHM 

systems can improve defect detection accuracy by up to 

95%, significantly outperforming conventional 

that must be addressed for wider adoption of AI-driven SHM frameworks. 

The review underscores the transformative impact of AI-powered SHM 

technologies, highlighting their potential to enhance bridge safety, 

optimize maintenance efficiency, and extend infrastructure lifespan, 

making them an essential component of next-generation smart 

infrastructure management. 

Figure 1: Representative blind spots in bridge inspection 

 

 

Source: Choi et al. (2023) 
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inspection methods (Li et al., 2019; Luo et al., 2021; 

Venkatesh et al., 2020). 

The application of machine learning (ML) algorithms in 

SHM has revolutionized structural assessment 

techniques by enabling predictive maintenance 

strategies (El Bsat et al., 2022; Younus, 2025). Machine 

learning models, including deep learning and 

convolutional neural networks (CNNs), have been 

extensively utilized to analyze sensor data and detect 

structural anomalies such as fatigue cracks, corrosion, 

and material degradation (Ali et al., 2022; Jahan, 2024). 

Recent studies demonstrate that AI-driven predictive 

analytics can forecast potential structural failures with a 

high degree of accuracy, reducing the likelihood of 

catastrophic bridge collapses (Calabrese et al., 2020; 

Rahaman et al., 2024). Additionally, integrating 

unsupervised learning techniques such as clustering and 

anomaly detection methods enhances the ability to 

identify patterns of structural deterioration without 

requiring labeled datasets (Akundi et al., 2022; Sabid & 

Kamrul, 2024). These advancements highlight the 

transformative role of AI in improving bridge health 

monitoring, ensuring the longevity and safety of aging 

infrastructure (Chen et al., 2014; Tonoy, 2022). Beyond 

anomaly detection, computer vision-based AI models 

have gained significant attention in SHM applications 

(Derisma et al., 2022). By utilizing high-resolution 

image processing and video analytics, computer vision 

techniques can automatically detect cracks, 

displacements, and spalling in bridge components (M. 

A. Alam et al., 2024; Islam et al., 2025; Ju et al., 2022). 

Studies suggest that these models exhibit higher 

precision than manual inspections, especially when 

applied in combination with drone-based remote 

sensing technologies (Dasgupta & Islam, 2024; 

Preuveneers et al., 2017). The fusion of AI and drone-

based imaging has enabled automated bridge 

inspections, minimizing the need for on-site human 

intervention while increasing data collection efficiency 

(Islam et al., 2024; Kovačić et al., 2022). Furthermore, 

the implementation of digital twin models, which create 

real-time virtual representations of bridge structures, 

has enabled engineers to simulate and assess various 

load conditions, optimizing long-term structural 

maintenance strategies (M. A. Alam et al., 2024; Longo 

et al., 2020). Despite the growing adoption of AI and 

sensor-based SHM systems, certain challenges remain, 

including data management complexities, sensor 

durability issues, and the high cost of large-scale 

implementation (Nguyen & Tran, 2021; Younus, 2022). 

The integration of cloud computing and edge 

computing frameworks has been proposed as a solution 

to address data processing constraints by enabling real-

time analytics at the edge of the network, reducing 

latency in SHM applications (Armbrust et al., 2010; 

Taufiqur, 2025). Researchers have also explored the 

potential of blockchain-based data security frameworks 

to ensure the integrity and confidentiality of SHM data, 

particularly for critical infrastructure (Sarkar et al., 

2025; Weiwei et al., 2017). The convergence of these 

emerging technologies within AI-driven SHM systems 

signifies a paradigm shift toward intelligent 

infrastructure management, where real-time decision-

making plays a central role in bridge maintenance and 

safety assurance (Rahnema & Bijari, 2018; Younus, 

2022). Moreover, the integration of AI, sensor 

networks, and predictive analytics has redefined SHM 

methodologies, providing unprecedented capabilities in 

early fault detection, structural assessment, and risk 

mitigation (Li & Hao, 2016; Sunny, 2024). As research 

continues to refine AI-driven SHM models, their 

scalability and adaptability to different bridge structures 

remain key areas of investigation (Caprani & Ahmadi, 

2016; Jahan, 2024). By leveraging AI-powered 

Figure 2: AI and ML in Bridge Health Monitoring 

https://journal.aimintlllc.com/index.php/FAET
https://journal.aimintlllc.com/index.php/FAET
https://journal.aimintlllc.com/index.php/FAET
https://doi.org/10.70937/faet.v2i01.70
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_67
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_71
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_119
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_33
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_132
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_7
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_52
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_18
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_93
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_2
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_99
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_99
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_25
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_115
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_31
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_3
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_3
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_47
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_57
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_29
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_88
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_48
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_61
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_3
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_70
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_70
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_83
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_131
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_9
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_114
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_101
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_101
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_125
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_94
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_131
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_131
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_65
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_112
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_19
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_19
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_52


Frontiers in Applied Engineering and Technology 
Page No: 135-163 

138 | P a g e  

 

 

monitoring systems, transportation authorities and civil 

engineers can transition from reactive maintenance 

approaches to proactive, data-driven decision-making, 

enhancing the resilience and sustainability of bridge 

infrastructure (Chan et al., 2006; Islam, 2024; Mridha 

Younus et al., 2024). The widespread adoption of these 

technologies has the potential to revolutionize bridge 

health monitoring, ultimately improving public safety 

and infrastructure reliability (Jamali et al., 2018; Jim et 

al., 2024). This systematic literature review aims to 

synthesize existing research on the integration of 

Artificial Intelligence (AI) and sensor technologies in 

real-time structural health monitoring (SHM) of in-

service bridges, with a focus on technological 

advancements, implementation challenges, and long-

term infrastructure sustainability. The key objectives 

are to (1) analyze and categorize the latest 

advancements in IoT-enabled sensor networks, 

including their accuracy, reliability, and deployment in 

diverse bridge environments; (2) evaluate the role of 

machine learning (ML) models, including deep 

learning, computer vision, and anomaly detection 

techniques, in predicting structural failures based on 

real-time sensor data; (3) assess the economic and 

operational benefits of AI-driven SHM systems by 

reviewing cost-reduction strategies, maintenance 

optimization, and risk mitigation frameworks; and (4) 

identify existing gaps and challenges, such as 

interoperability issues, data processing constraints, and 

ethical considerations in large-scale implementation. 

By systematically reviewing and synthesizing relevant 

literature, this study provides a comprehensive, 

evidence-based assessment of how AI and sensor 

technologies are reshaping bridge maintenance 

strategies, offering insights into their practical adoption, 

scalability, and future research directions.. 

2 LITERATURE REVIEW 

The integration of Artificial Intelligence (AI) and 

sensor technologies in Structural Health Monitoring 

(SHM) has emerged as a transformative approach for 

ensuring the safety and longevity of in-service bridges. 

Traditional inspection methods, which rely on periodic 

manual assessments, non-destructive testing (NDT), 

and visual inspections, have been criticized for their 

high labor costs, subjectivity, and inability to detect 

early-stage structural deterioration (Biliszczuk et al., 

2021; Hossain et al., 2024). The increasing frequency of 

bridge failures and infrastructure degradation has driven 

researchers to explore real-time, data-driven solutions 

powered by IoT-enabled sensors, predictive analytics, 

and AI-based anomaly detection models (Mahabub, 

Jahan, et al., 2024; Venkatraman et al., 2012). This 

section systematically reviews the existing literature on 

SHM technologies, focusing on the evolution of 

traditional inspection practices, recent advancements in 

sensor technologies, machine learning applications in 

SHM, the role of AI-driven predictive analytics, 

economic implications, and key implementation 

challenges. 

 Traditional Bridge Inspection 

Structural health monitoring (SHM) of bridges has 

historically relied on traditional inspection methods, 

including visual assessments, non-destructive testing 

(NDT), and manual structural evaluations performed by 

certified inspectors (Gomez-Cabrera & Escamilla-

Ambrosio, 2022). Visual inspections, considered the 

most commonly employed approach, involve engineers 

conducting on-site assessments to identify visible 

defects such as cracks, spalling, and corrosion (Indhu et 

al., 2022). Despite their widespread use, visual 

inspections are inherently subjective, labor-intensive, 

and dependent on inspector expertise, leading to 

inconsistencies in defect detection (Sharma et al., 

2021). Furthermore, these methods provide only 

periodic assessments, making it difficult to detect early-

stage structural deterioration that may progress between 

inspection cycles (Biliszczuk et al., 2021). The reliance 

on manual evaluations has been cited as a major 

limitation in bridge maintenance, as they fail to provide 

real-time monitoring of structural health conditions 

(Buyurgan et al., 2007). Given these constraints, 

researchers have increasingly questioned the 

effectiveness and reliability of traditional bridge 

inspection methods in ensuring long-term infrastructure 

safety and durability (Indhu et al., 2022). Non-

destructive testing (NDT) techniques, including 

ultrasonic testing, ground-penetrating radar (GPR), 

infrared thermography, and acoustic emission analysis, 

have been employed to complement visual inspections 

by identifying internal structural defects that may not be 

visible on the surface (Sharma et al., 2021). NDT 

methods have demonstrated higher accuracy in 

detecting subsurface defects, such as delamination, 

voids, and internal cracking, without causing damage to 

bridge components (Kumarapu et al., 2022). For 
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example, ultrasonic pulse velocity (UPV) testing has 

been successfully utilized to assess concrete integrity by 

analyzing the propagation speed of ultrasonic waves 

through structural materials (Salmerón-Manzano & 

Manzano-Agugliaro, 2019). However, despite their 

effectiveness, NDT techniques remain limited by 

operational complexity, high costs, and dependence on 

specialized equipment and trained personnel (Gomez-

Cabrera & Escamilla-Ambrosio, 2022). Moreover, 

traditional NDT approaches are often time-consuming 

and localized, requiring engineers to conduct spot-

check assessments rather than continuous structural 

monitoring (Sharma et al., 2021). As a result, NDT 

methods have been criticized for their inability to 

provide large-scale, real-time condition assessments, 

leading to delays in maintenance interventions and 

increased infrastructure risks (Buyurgan et al., 2007). 

Another significant limitation of traditional inspection 

methods is the reactive nature of maintenance strategies 

based on periodic evaluations rather than proactive 

monitoring (Sharma et al., 2021). Bridges that undergo 

scheduled inspections at fixed intervals may experience 

unnoticed structural deterioration between assessment 

cycles, increasing the risk of catastrophic failures 

(Indhu et al., 2022). Historical case studies of bridge 

collapses have demonstrated that many failures could 

have been prevented if early-stage deterioration had 

been detected and addressed in a timely manner 

(Buyurgan et al., 2007). For instance, the collapse of the 

I-35W Mississippi River Bridge in 2007 was attributed 

to structural deficiencies that were not identified early 

enough, despite regular inspections (Biliszczuk et al., 

2021). Researchers argue that periodic assessments do 

not align with the dynamic and unpredictable nature of 

structural degradation, necessitating the adoption of 

real-time, data-driven monitoring systems (Gordan et 

al., 2022). Additionally, harsh environmental 

conditions, such as temperature fluctuations, seismic 

activities, and heavy traffic loads, contribute to 

accelerated wear and tear on bridge components, further 

challenging the efficacy of pre-scheduled inspection 

cycles (Komarizadehasl et al., 2022). The increasing 

complexity of modern bridge infrastructure and the 

limitations of traditional inspection methods have 

prompted a shift toward intelligent, sensor-based 

structural health monitoring (SHM) systems (Civera et 

al., 2022). Emerging studies emphasize the need for 

real-time data acquisition, automated anomaly 

detection, and AI-driven predictive analytics to enhance 

bridge safety and optimize maintenance efforts (Zinno 

et al., 2018). The transition from manual inspections 

and periodic evaluations to continuous, AI-enhanced 

SHM technologies is expected to address long-standing 

challenges in defect detection, cost efficiency, and 

infrastructure resilience (Momeni & Ebrahimkhanlou, 

2022). Researchers have increasingly recognized the 

importance of integrating IoT-enabled sensor networks, 

machine learning models, and edge computing 

architectures to enable automated, real-time bridge 

health assessments (Komarizadehasl et al., 2022). 

While traditional inspection methods remain a 

fundamental component of bridge maintenance, they 

Figure 3: Traditional Bridge Inspection Methods 
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are increasingly being supplemented or replaced by 

advanced monitoring technologies that offer higher 

accuracy, efficiency, and predictive capabilities 

(Entezami et al., 2020). 

 Structural Health Monitoring Methods 

The evolution of Structural Health Monitoring (SHM) 

methods has transformed bridge maintenance and safety 

assessment by integrating real-time data acquisition, 

sensor-based technologies, and artificial intelligence 

(AI)-driven analytics (Carroll et al., 2021). Traditional 

SHM approaches relied on periodic inspections, non-

destructive testing (NDT), and manual evaluations, 

which, while effective in detecting major defects, often 

failed to identify early-stage deterioration (Tan et al., 

2017). The limitations of manual methods led to the 

development of automated SHM systems, which 

incorporate wireless sensor networks (WSNs), fiber 

optic sensors, and advanced signal processing 

techniques to continuously monitor bridge conditions 

(Islam et al., 2013). IoT-enabled sensors now provide 

real-time data on structural integrity, capturing 

fluctuations in vibration, strain, displacement, and 

temperature with high precision (Azimi et al., 2020). 

These advancements have reduced dependency on 

human inspections, improving efficiency in defect 

detection while lowering maintenance costs (Lin & 

Huang, 2020). Studies have demonstrated that sensor-

based SHM systems significantly outperform 

traditional inspections by identifying micro-damages 

and material degradation in real-time (Azimi et al., 

2020; Lin & Huang, 2020). The growing demand for 

data-driven infrastructure monitoring has further led to 

the integration of AI-based predictive analytics, 

enhancing the accuracy and effectiveness of SHM 

strategies (Lyu et al., 2017). Among the most widely 

adopted SHM techniques are wireless sensor networks 

(WSNs), which enable distributed, remote monitoring 

of bridge structures without requiring extensive cabling 

(Glisic, 2022). WSN-based SHM systems utilize micro-

electromechanical systems (MEMS) sensors, 

accelerometers, and strain gauges to track structural 

performance under dynamic loading conditions 

(Malekloo et al., 2020). Compared to wired systems, 

WSNs provide increased scalability, flexibility, and 

ease of deployment, making them suitable for long-span 

bridges and hard-to-reach areas (Delgadillo & Casas, 

2022). In addition, fiber optic sensing technologies, 

such as fiber Bragg grating (FBG) sensors, have been 

integrated into SHM frameworks for their high 

sensitivity, durability, and immunity to electromagnetic 

interference (Azimi et al., 2020). Studies indicate that 

FBG sensors excel in monitoring distributed strain, 

thermal fluctuations, and load variations, making them 

highly effective in assessing structural stability over 

time (Azimi et al., 2020; Islam et al., 2013; Malekloo et 

al., 2020). Despite these benefits, WSN and fiber optic 

sensor-based SHM methods face challenges related to 

data transmission reliability, environmental influences, 

and long-term operational stability (Glisic, 2022). 

Nonetheless, advancements in cloud computing, edge 

computing, and AI-driven data analysis are addressing 

these limitations by enabling real-time processing, 

anomaly detection, and predictive maintenance 

strategies (Delgadillo & Casas, 2022). 

Machine learning (ML) and deep learning (DL) 

techniques have revolutionized SHM methods by 

providing automated, intelligent data interpretation for 

structural assessment (Entezami et al., 2020). 

Supervised and unsupervised learning models analyze 

vast datasets from IoT-enabled sensors, drones, and 

imaging systems to detect anomalies, fatigue cracks, 

corrosion, and structural degradation (Lyu et al., 2017). 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) have shown high accuracy in 

processing vibration signals, displacement patterns, and 

strain distribution data for fault prediction in bridges 

(Azimi et al., 2020). Computer vision-based SHM 

techniques, integrated with AI-powered image analysis, 

further enhance structural defect detection by 

processing high-resolution images and infrared thermal 

scans (Lyu et al., 2017). Studies have demonstrated that 

AI-driven SHM frameworks outperform conventional 

approaches in early damage identification, anomaly 

classification, and long-term performance prediction 

(Michalcová et al., 2018). However, the complexity of 

AI models, computational resource requirements, and 

data integration challenges remain key barriers to 

widespread adoption (Lydon et al., 2021). Recent 

developments in cloud-based AI platforms and edge 

computing architectures are mitigating these challenges 

by facilitating real-time, scalable SHM applications 

(Tan et al., 2017). 

The combination of drone-assisted remote sensing, 

digital twin modeling, and blockchain-based data 

security has further enhanced next-generation SHM 

methods, enabling high-precision, autonomous 

infrastructure monitoring (Lydon et al., 2021). Drone-
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based aerial inspections capture high-resolution images 

and LiDAR scans, allowing engineers to assess 

structural conditions without requiring physical access 

to bridge components (Malekloo et al., 2020). These 

methods have been particularly effective in monitoring 

large-scale, high-risk structures, where manual 

inspections are impractical or hazardous (Delgadillo & 

Casas, 2022). Digital twin models, which create virtual 

replicas of bridges, simulate various environmental and 

load conditions, providing a comprehensive 

understanding of structural behavior (Michalcová et al., 

2018). Additionally, blockchain-integrated SHM 

frameworks ensure data integrity, security, and 

transparency in infrastructure monitoring by preventing 

tampering and unauthorized modifications (Delgadillo 

& Casas, 2022). While emerging SHM technologies 

present challenges related to scalability, 

interoperability, and regulatory compliance, they have 

demonstrated superior reliability, cost-efficiency, and 

real-time risk mitigation capabilities (Rahnema & 

Bijari, 2018). The literature highlights that integrating 

AI, IoT sensors, and cloud-based analytics into SHM 

methodologies represents a significant advancement in 

structural safety and bridge maintenance strategies 

(Modir & Tansel, 2022). 

 Periodic Visual Inspections and Manual 

Evaluations 

Periodic visual inspections and manual evaluations 

have long been the primary methods for assessing 

bridge structural health, relying on on-site assessments 

by trained inspectors to identify visible signs of damage 

such as cracks, corrosion, and material degradation 

(Ásgrímsson et al., 2021). These inspections are 

generally conducted at predetermined intervals, 

typically every two years, as mandated by national 

bridge inspection standards (Jeong et al., 2022). 

However, studies have highlighted the inconsistencies 

and limitations of these methods, particularly in 

detecting early-stage structural damage and hidden 

defects that could lead to serious failures if left 

unaddressed (Ásgrímsson et al., 2021). The reliance on 

human judgment introduces variability in assessment 

accuracy, as inspectors may interpret damage 

differently, leading to inconsistent maintenance 

decisions and potential safety risks (Entezami et al., 

2020). Additionally, the high labor costs, time-intensive 

nature, and logistical challenges associated with manual 

inspections have raised concerns about their overall 

efficiency and effectiveness in modern infrastructure 

management (Lydon et al., 2021). 

The accuracy of periodic visual inspections is often 

compromised due to environmental conditions, 

Figure 4: Evolution and Integration of SHM Methods 

 

 

Figure 5: Structural Health Monitoring and Maintenance 

Strategies 
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inspector fatigue, and the complexity of bridge 

structures (Zinno, Haghshenas, Guido, & Vitale, 2022). 

Studies have shown that inspectors struggle to detect 

micro-cracks, hidden corrosion, and fatigue damage, 

particularly in large-scale or high-altitude bridge 

components (Malekloo et al., 2020). Structural damage 

that develops internally or beneath bridge decks is 

especially difficult to identify through visual 

assessments alone (Delgadillo & Casas, 2022). A 

comparative study between manual inspections and 

sensor-based monitoring revealed that visual 

assessments detected only 65% of structural issues, 

while advanced sensor networks identified 92% of 

defects, highlighting the limitations of human-

dependent evaluations (Ásgrímsson et al., 2021). 

Moreover, factors such as poor lighting, adverse 

weather, and inspector accessibility further reduce 

detection accuracy, resulting in delayed interventions 

and increased maintenance costs (Delgadillo & Casas, 

2022). These findings emphasize the need for enhanced 

assessment methodologies that can mitigate human 

error and improve early damage detection in bridge 

infrastructure (Xiaowei et al., 2017). 

Another major concern associated with periodic visual 

inspections is their heavy reliance on inspector 

expertise and subjective judgment (Ásgrímsson et al., 

2021). Different inspectors may interpret structural 

conditions inconsistently, leading to variability in 

damage classification and prioritization (Delgadillo & 

Casas, 2022). Studies have demonstrated that the 

subjective nature of visual inspections often results in 

overlooking minor structural deficiencies, which can 

escalate into major safety hazards if left unaddressed 

(Malekloo et al., 2020). Additionally, inspector 

experience plays a significant role in detection 

accuracy, with less experienced evaluators being more 

prone to misclassification or underreporting of 

structural issues (Entezami et al., 2020). A study by 

(Barthorpe et al., 2021) found that senior inspectors 

identified 80% of visible defects, whereas junior 

inspectors detected only 55%, indicating the strong 

dependency on expertise and training in manual 

assessments. These discrepancies highlight the inherent 

subjectivity of traditional inspections, which can lead to 

delays in necessary maintenance, underestimation of 

damage severity, and potential safety failures (Carroll et 

al., 2021). Despite their shortcomings, periodic visual 

inspections remain a fundamental component of bridge 

maintenance programs due to their accessibility and 

regulatory compliance (Chan et al., 2006). However, 

researchers have increasingly advocated for integrating 

automated assessment tools such as AI-powered image 

processing, drone-assisted inspections, and sensor-

based structural health monitoring (SHM) systems to 

enhance accuracy and consistency in bridge evaluations 

(Pudipeddi et al., 2017). The development of computer 

vision-based defect detection models has shown 

promising results in minimizing subjectivity and 

improving damage classification (Tan et al., 2017). 

Additionally, machine learning algorithms trained on 

historical inspection data have demonstrated higher 

precision in identifying structural deterioration patterns, 

reducing the dependency on human evaluators 

(Momeni & Ebrahimkhanlou, 2022). These 

advancements underscore the growing recognition of 

technology-assisted inspections as a means to address 

the limitations of traditional visual evaluations, 

ensuring more reliable and proactive infrastructure 

management (Chan et al., 2006). 

 Non-Destructive Testing (NDT) Techniques 

in SHM 

Non-Destructive Testing (NDT) techniques have 

played a critical role in Structural Health Monitoring 

(SHM) by enabling the assessment of material integrity, 

defect detection, and structural performance without 

causing damage to bridge components (Zhou et al., 

2017). Among the most widely utilized NDT methods 

are ultrasonic testing, acoustic emission analysis, and 

infrared thermography, each of which offers distinct 

advantages for early-stage damage detection and 

continuous monitoring (Pudipeddi et al., 2017). 

Ultrasonic testing relies on high-frequency sound waves 

to detect internal defects such as cracks, voids, and 

delamination in bridge materials (Carroll et al., 2021). 

Studies have demonstrated that ultrasonic pulse velocity 

(UPV) testing provides high accuracy in concrete 

integrity assessments, making it a valuable tool for 

identifying subsurface damage (Carroll et al., 2021; 

Zhou et al., 2017). Similarly, acoustic emission (AE) 

monitoring is effective in detecting structural 

degradation by capturing stress-induced wave signals 

generated by active cracks or material fatigue (Islam et 

al., 2013). Infrared thermography (IRT), on the other 

hand, has been widely applied for thermal imaging-

based inspections, allowing engineers to identify 

moisture ingress, corrosion, and delamination through 

heat distribution anomalies in bridge decks and steel 
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structures (Lin & Huang, 2020). While these NDT 

techniques offer significant advantages in detecting 

hidden structural defects, their practical implementation 

often requires specialized equipment, skilled personnel, 

and high-resolution data interpretation (Islam et al., 

2013). Despite their technical capabilities, NDT 

techniques face challenges in large-scale deployment, 

particularly for extensive infrastructure networks such 

as bridges, highways, and tunnels (Carroll et al., 2021). 

One major limitation is the localized nature of NDT 

assessments, as most ultrasonic, acoustic emission, and 

infrared thermography methods are designed for spot-

based inspections rather than continuous, real-time 

monitoring (Lyu et al., 2017). For instance, ultrasonic 

testing requires direct surface contact, making it 

impractical for evaluating large bridge spans or hard-to-

access components (Gomez-Cabrera & Escamilla-

Ambrosio, 2022). Similarly, acoustic emission systems 

require long-term data acquisition to track damage 

progression, limiting their use in rapid structural 

assessments (Zhang & Yuen, 2022). Another challenge 

is the high dependency on environmental conditions, as 

infrared thermography is susceptible to external 

temperature fluctuations, humidity variations, and 

surface emissivity differences, which can affect the 

accuracy of defect identification (Gomes et al., 2017). 

Studies have also pointed out that NDT-based 

inspections are labor-intensive, requiring skilled 

operators and post-processing of large datasets, further 

complicating their integration into automated SHM 

systems (Biliszczuk et al., 2021; Gomes et al., 2017; 

Gomez-Cabrera & Escamilla-Ambrosio, 2022). 

The real-time application of NDT techniques in SHM 

remains limited due to challenges related to data 

acquisition, interpretation, and integration with sensor-

based monitoring networks (Indhu et al., 2022). 

Traditional ultrasonic and acoustic emission methods 

generate high volumes of wave propagation data, 

necessitating advanced signal processing algorithms to 

distinguish structural anomalies from background noise 

(Wang et al., 2021). Additionally, infrared 

thermography scans produce thermal images that 

require specialized AI-driven models for accurate 

defect classification (Sharma et al., 2021). The high 

computational demands associated with NDT data 

analysis have spurred research into AI-assisted 

diagnostic tools, machine learning-based defect 

recognition, and edge computing frameworks to enable 

faster, automated processing of inspection data (Gomes 

et al., 2017; Kumarapu et al., 2022). Recent 

advancements in integrating NDT methods with IoT-

enabled wireless sensors have shown promise in 

overcoming real-time monitoring constraints, as these 

systems can continuously track material conditions and 

trigger alerts based on predictive maintenance models 

(Yang et al., 2017). However, scalability remains a 

significant barrier, as most current AI-NDT integration 

studies have been conducted in controlled laboratory 

environments rather than in real-world bridge 

monitoring scenarios (Figueiredo et al., 2022). While 

Figure 6: Evolution and Integration of SHM Methods 

 

 
Source: Keshmiry et al.. (2023).  
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NDT techniques provide valuable insights into bridge 

integrity and material degradation, researchers 

emphasize the need for hybrid monitoring approaches 

that combine NDT methods with real-time sensor 

networks and AI-driven analytics (Gomes et al., 2017). 

The fusion of ultrasonic testing, acoustic emission, and 

infrared thermography with wireless sensor networks 

(WSNs), fiber optic sensors, and digital twin modeling 

has demonstrated improved accuracy and efficiency in 

SHM applications (Li & Hao, 2016). For instance, 

ultrasonic guided wave testing combined with machine 

learning algorithms has been proven effective in 

automating crack detection in steel bridge components 

(Gomez-Cabrera & Escamilla-Ambrosio, 2022). 

Additionally, deep learning-based thermal image 

analysis has enhanced the reliability of infrared 

thermography by minimizing false positives caused by 

environmental interference (Sharma et al., 2021). As a 

result, multi-modal SHM systems integrating NDT 

techniques with sensor-based monitoring are emerging 

as a promising solution for comprehensive, data-driven 

bridge assessments (Gomes et al., 2017). 

 IoT-Enabled Sensors and Smart SHM 

Technologies 

The integration of IoT-enabled sensors and smart 

Structural Health Monitoring (SHM) technologies has 

revolutionized bridge maintenance by enabling real-

time data collection, predictive analytics, and 

automated condition assessments (Trần et al., 2021). 

Traditional bridge inspections, which rely on periodic 

manual evaluations, have been increasingly 

supplemented with wireless sensor networks (WSNs), 

fiber optic sensors, and cloud-based monitoring systems 

to enhance detection accuracy and reduce human 

intervention (Ding et al., 2023). Recent advancements 

in MEMS-based sensors, fiber Bragg grating (FBG) 

technology, and edge computing architectures have 

further improved the efficiency, scalability, and cost-

effectiveness of IoT-driven SHM solutions (CİĞErcİ, 

2023). These sensor networks provide continuous data 

streams on structural parameters, such as stress, strain, 

vibration, and temperature fluctuations, allowing 

engineers to detect early-stage defects and schedule 

maintenance interventions before structural failures 

occur (Ghazal et al., 2021). However, interoperability 

challenges, data transmission reliability, and 

environmental influences remain significant barriers to 

widespread adoption (Zinno et al., 2018). The 

development of Wireless Sensor Networks (WSNs) has 

significantly advanced real-time bridge health 

monitoring by enabling continuous, remote data 

collection (Soori et al., 2023). Micro-electromechanical 

systems (MEMS)-based sensors, integrated into WSNs, 

have been widely deployed for stress, strain, 

acceleration, and vibration monitoring, providing high-

precision measurements of structural performance 

under dynamic loads (Stadnicka et al., 2022). Unlike 

traditional wired sensor networks, which require 

extensive cabling and maintenance, WSNs offer 

enhanced scalability, lower installation costs, and 

energy-efficient operation (Prus & Sikora, 2021). 

Recent research has demonstrated that MEMS-based 

accelerometers and strain gauges have improved the 

accuracy of damage detection in long-span bridges, 

particularly in detecting fatigue-induced micro-cracks 

and load distribution anomalies (Zinno et al., 2018). 

Additionally, the integration of cloud-based data 

acquisition platforms has streamlined real-time 

processing, anomaly detection, and predictive 

maintenance scheduling (Soori et al., 2023). Despite 

these benefits, WSN deployments face challenges 

related to sensor node durability, power supply 

limitations, and data security risks, which necessitate 

further advancements in battery-free energy harvesting 

techniques and blockchain-based cybersecurity 

solutions (Zinno et al., 2018). 

Distributed Fiber Optic Sensors (DFOS) have emerged 

as a highly effective technology for monitoring long-

span bridges due to their high sensitivity, durability, and 

resistance to environmental interference (Soori et al., 

2023). Fiber Bragg Grating (FBG) sensors, a widely 

used form of DFOS, are particularly effective in 

measuring strain, temperature, and structural 

displacement in bridge components (CİĞErcİ, 2023). 

Unlike traditional point-based sensors, DFOS enables 

continuous structural assessment over large distances, 

making them suitable for monitoring critical bridge 

sections such as cables, decks, and piers (Ding et al., 

2023). One of the primary advantages of FBG-based 

monitoring is its ability to operate in harsh 

environmental conditions, including high-humidity, 

corrosive, and extreme temperature environments, 

which are common in coastal and high-altitude bridges 

(CİĞErcİ, 2023). However, temperature fluctuations 

can introduce errors in strain measurements, 

necessitating the use of temperature compensation 

techniques, such as hybrid sensing approaches that 
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combine FBG sensors with distributed temperature 

sensors (DTS) (Soori et al., 2023). While DFOS 

technology has demonstrated high reliability and 

precision in large-scale bridge applications, cost 

barriers, complex installation procedures, and data 

processing demands remain critical challenges in its 

widespread adoption (Ding et al., 2023). 

The role of Internet of Things (IoT) technologies in real-

time bridge monitoring has been pivotal in transforming 

SHM methodologies by enabling automated data 

collection, cloud-based analytics, and remote diagnostic 

capabilities (Soori et al., 2023). IoT-driven SHM 

systems leverage edge computing and fog computing 

frameworks to process sensor data locally, reducing 

latency and improving real-time decision-making 

(Stadnicka et al., 2022). Compared to traditional 

centralized cloud processing, edge computing allows 

bridge sensors to perform initial data filtering and 

anomaly detection at the network edge, significantly 

reducing bandwidth requirements and improving 

response times (Prus & Sikora, 2021). Additionally, fog 

computing extends these capabilities by distributing 

processing loads across multiple network layers, 

enabling faster, decentralized SHM applications in 

large-scale bridge networks (Xu et al., 2018). However, 

the heterogeneous nature of IoT sensor networks has led 

to challenges in interoperability, as different sensor 

types may generate incompatible data formats that 

require standardized protocols for seamless integration 

(Rudenko et al., 2022). Researchers have proposed 

interoperability frameworks that utilize blockchain-

based data sharing and AI-driven sensor fusion to 

enhance the accuracy and security of IoT-enabled SHM 

systems (Yu et al., 2021). These advancements 

underscore the growing role of IoT technologies in 

predictive maintenance strategies, enabling 

infrastructure managers to transition from reactive 

maintenance approaches to data-driven, proactive 

decision-making (Rudenko et al., 2022). 

 Artificial Intelligence and Machine Learning 

Applications in SHM 

The application of Artificial Intelligence (AI) and 

Machine Learning (ML) in Structural Health 

Monitoring (SHM) has significantly advanced the 

ability to detect structural damage, predict failures, and 

optimize maintenance schedules (Stadnicka et al., 

2022). Traditional SHM approaches often rely on 

manual inspections and periodic sensor-based 

evaluations, which are limited by human error, data 

inconsistencies, and reactive maintenance strategies 

(L'Esteve, 2023). AI-driven SHM systems leverage 

pattern recognition, anomaly detection, and predictive 

analytics to provide a proactive approach to bridge 

monitoring, ensuring early fault detection and cost-

effective infrastructure management (Fan et al., 2023). 

Recent studies have demonstrated that AI models 

trained on real-time sensor data can identify structural 

defects such as cracks, corrosion, and fatigue damage 

with higher accuracy than traditional methods (Raju & 

Sumallika, 2023). This section explores AI-based 

damage detection models, deep learning techniques, 

and predictive maintenance frameworks, highlighting 

their role in automating decision-making and 

optimizing long-term bridge safety (Chen et al., 2023). 

AI-based structural damage detection models have 

evolved to enhance anomaly detection in SHM by 

analyzing vast datasets collected from sensors, drones, 

and imaging systems (Sassanelli et al., 2022). 

Supervised learning models, such as support vector 

machines (SVMs) and decision trees, have been widely 

used to classify structural defects based on labeled 

training datasets, enabling precise crack and strain 

detection in bridges (Stadnicka et al., 2022). However, 

supervised learning models require extensive labeled 

data, which can be time-consuming and labor-intensive 

to acquire, especially for large-scale bridge networks 

(Raju & Sumallika, 2023). In contrast, unsupervised 

learning techniques, such as clustering and anomaly 

detection algorithms, can detect structural defects 

without prior labels, making them suitable for real-time 

bridge monitoring where damage evolution is 

unpredictable (Chen et al., 2023). Additionally, hybrid 

AI models that integrate physics-based simulations with 

data-driven ML approaches have shown improved 

accuracy in predicting structural responses under 

various environmental and load conditions (L'Esteve, 

2023). These hybrid models leverage historical data, 

material properties, and real-time sensor inputs to 

develop adaptive predictive frameworks for early 

damage identification and maintenance optimization 

(Mahabub, Jahan, et al., 2024; Singh et al., 2023). 

Deep learning techniques, particularly Convolutional 

Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), have demonstrated significant 
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potential in automating damage detection and structural 

health assessment (Hossain et al., 2024; Zhu et al., 

2023). CNN-based models have been widely applied in 

crack detection and fatigue analysis by analyzing high-

resolution images captured from drones, infrared 

thermography, and structural cameras (Boute et al., 

2022; Mahabub, Das, et al., 2024). CNNs can extract 

complex features from image datasets, allowing for 

precise identification of crack width, corrosion levels, 

and surface deformations in bridge components (Wang 

& Zhao, 2021). Studies have shown that CNN-based 

damage detection achieves over 90% accuracy, 

outperforming traditional manual inspections and 

sensor-based threshold methods (Jena et al., 2021; 

Wang & Zhao, 2021). Additionally, RNNs have been 

applied to process time-series sensor data, such as 

vibration signals, stress fluctuations, and strain 

distribution in bridges (Azimi et al., 2020). Long Short-

Term Memory (LSTM) networks, a variant of RNNs, 

have proven effective in predicting long-term structural 

behavior based on historical sensor measurements, 

enabling early identification of bridge component 

deterioration trends (Górriz et al., 2023). Despite their 

effectiveness, deep learning models require large 

labeled datasets and computational resources, which 

pose challenges for real-time SHM deployment in 

large-scale infrastructure networks (Torres da Rocha et 

al., 2022). AI-driven predictive analytics has 

transformed bridge maintenance strategies by shifting 

from reactive to proactive approaches, reducing 

unexpected failures and extending bridge lifespan 

(Ásgrímsson et al., 2021). Predictive maintenance 

models leverage historical performance data, real-time 

sensor inputs, and environmental factors to forecast 

structural deterioration trends and recommend optimal 

maintenance schedules (Zhu et al., 2023). Studies have 

shown that AI-based predictive maintenance 

frameworks can reduce maintenance costs by up to 40% 

by identifying critical issues before they escalate into 

severe structural failures (Azimi et al., 2020; Zhu et al., 

2023). Additionally, reinforcement learning algorithms 

have been integrated into automated decision-making 

systems, allowing SHM frameworks to continuously 

learn from structural behavior and optimize 

maintenance interventions dynamically (Shi et al., 

2022). Reinforcement learning models use reward-

based optimization strategies, where AI systems 

adaptively adjust maintenance timing and resource 

allocation to achieve cost-effective bridge management 

(Baduge et al., 2022). However, challenges such as data 

sparsity, integration with legacy SHM systems, and 

computational demands remain significant barriers to 

scaling AI-driven predictive maintenance across 

national infrastructure networks (Wang & Zhao, 2021). 

 Computer Vision-Based SHM and Drone-

Assisted Monitoring 

The integration of computer vision-based Structural 

Health Monitoring (SHM) and drone-assisted 

inspections has significantly enhanced bridge safety 

assessments, defect detection, and maintenance 

planning (Mandirola et al., 2022). Traditional manual 

and sensor-based inspections often face challenges 

related to limited accessibility, human error, and time-

consuming processes, prompting researchers to explore 

Figure 7: A general framework for vibration-based damage detection systems 

 

 

Source: Mondal and Chen (2022) 
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AI-driven image processing and autonomous drone 

technology for more efficient structural evaluations 

(Aleem Al Razee et al., 2025; Derisma et al., 2022). 

Computer vision techniques, including high-resolution 

imaging, spectral analysis, and AI-powered object 

detection, have been widely adopted for detecting 

cracks, corrosion, and other structural anomalies in 

bridges (Zinno, Haghshenas, Guido, Rashvand, et al., 

2022). Simultaneously, unmanned aerial vehicles 

(UAVs) equipped with advanced imaging systems 

provide rapid, cost-effective, and high-precision bridge 

inspections, reducing the need for manual labor and 

costly scaffolding (Ranyal et al., 2022). This section 

examines the role of image processing in SHM and AI-

powered drone inspections, highlighting their impact on 

structural integrity assessment and bridge maintenance 

strategies (Polydorou et al., 2021). 

Advancements in high-resolution imaging techniques 

have revolutionized structural health assessments, 

enabling engineers to detect and analyze damage 

patterns in bridges with higher precision and efficiency 

(Bono et al., 2022). AI-enhanced computer vision 

algorithms have been trained to process thermal 

imaging, photogrammetry, and infrared spectroscopy to 

detect subtle cracks, rust formations, and material 

degradation that are often missed in manual inspections 

(Carroll et al., 2021). Crack detection models based on 

Convolutional Neural Networks (CNNs) have 

demonstrated higher accuracy in identifying crack 

width, length, and propagation trends, minimizing the 

risk of undetected structural weaknesses (Zinno, 

Haghshenas, Guido, Rashvand, et al., 2022). 

Additionally, spectral analysis techniques, which 

analyze surface reflectance and absorption properties, 

have been utilized to monitor early-stage material 

deterioration and corrosion formation (Bono et al., 

2022). Studies have shown that integrating image 

processing with sensor-based SHM systems improves 

defect detection rates by up to 92%, compared to 65% 

in conventional visual inspections (Bono et al., 2022; 

Zinno, Haghshenas, Guido, Rashvand, et al., 2022). 

However, challenges remain in standardizing image 

processing techniques, particularly regarding variations 

in lighting conditions, occlusions, and environmental 

interference, which can affect the accuracy of AI-driven 

defect detection models (Mandirola et al., 2022). The 

use of drones equipped with AI-powered imaging and 

object detection technologies has transformed bridge 

safety inspections, providing high-resolution aerial 

assessments of inaccessible structures (Malekloo et al., 

2020). Unmanned aerial vehicles (UAVs) allow for the 

autonomous capture of bridge surface data, 

significantly reducing the need for manual inspections 

and improving the safety of engineers working in 

hazardous environments (Shahmoradi et al., 2020). 

Machine learning algorithms, particularly Deep 

Learning-based object detection frameworks, have been 

integrated into drone inspection workflows, allowing 

real-time identification of structural defects such as 

cracks, spalling, and corrosion (Ranyal et al., 2022). 

Case studies on urban bridge inspections have 

demonstrated that drone-based SHM applications can 

reduce inspection costs by up to 40% while increasing 

defect detection efficiency by 85% (Polydorou et al., 

2021). Additionally, UAV-based LiDAR (Light 

Detection and Ranging) systems have been utilized for 

3D reconstruction of bridge structures, enabling 

engineers to perform comprehensive structural analysis 

without the need for physical access to bridge 

components (Carroll et al., 2021). Despite these 

advantages, the widespread adoption of drone-assisted 

SHM systems faces regulatory challenges related to 

airspace restrictions, data privacy, and autonomous 

flight coordination (Shahmoradi et al., 2020). 

 Economic Benefits of AI-Driven SHM 

Systems 

The adoption of AI-driven Structural Health Monitoring 

(SHM) systems has provided significant economic 

benefits by reducing operational costs, improving 

inspection efficiency, and extending the lifespan of 

bridge infrastructure (Chan et al., 2018). Traditional 

bridge inspection and maintenance approaches rely 

heavily on manual assessments and periodic 

evaluations, which are often labor-intensive, time-

consuming, and prone to human error (Noel et al., 

2017). In contrast, AI-enabled SHM systems, powered 

by IoT sensors, machine learning models, and 

predictive analytics, enable real-time monitoring and 

proactive maintenance planning, leading to substantial 

cost savings and improved resource allocation 

(AlHamaydeh & Ghazal Aswad, 2022). As 

governments and infrastructure agencies seek cost-

effective solutions to address the challenges of aging 

bridges and limited maintenance budgets, AI-driven 
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SHM technologies have emerged as a viable alternative 

to traditional methods, offering long-term financial and 

operational advantages (Pallarés et al., 2021). This 

section examines the cost reduction benefits of AI-

based SHM solutions and evaluates their return on 

investment (ROI) in large-scale infrastructure projects. 

The implementation of AI and IoT technologies in SHM 

has led to a substantial reduction in operational and 

maintenance costs by enabling predictive maintenance 

strategies (Zinno, Haghshenas, Guido, Rashvand, et al., 

2022). Traditional maintenance approaches often rely 

on scheduled inspections and reactive repairs, which 

can result in unexpected failures and costly emergency 

interventions (Song et al., 2017). AI-driven SHM 

systems address this challenge by analyzing real-time 

data from IoT sensors, predicting potential structural 

failures, and recommending targeted maintenance 

actions before severe damage occurs (Chan et al., 2018). 

Studies have shown that predictive maintenance 

reduces bridge maintenance costs by 30–50%, 

compared to traditional reactive methods (Chan et al., 

2018; Chan & Thambiratnam, 2011). Additionally, a 

comparative cost-effectiveness analysis between AI-

driven SHM and manual inspections has demonstrated 

that automated monitoring systems significantly lower 

the overall inspection and maintenance expenses 

(AlHamaydeh & Ghazal Aswad, 2022). While manual 

inspections require extensive labor, temporary traffic 

disruptions, and specialized equipment, AI-enabled 

remote monitoring eliminates many of these 

inefficiencies, allowing for continuous assessment 

without interfering with daily bridge operations (Chan 

et al., 2018). Moreover, case studies on AI-powered 

drone inspections have revealed a 40% cost reduction in 

bridge inspections by replacing traditional scaffolding-

based evaluations with autonomous UAV-based 

surveys (Wei & Chen, 2021). These findings highlight 

the financial advantages of integrating AI and IoT 

technologies in SHM, reinforcing their role in 

minimizing maintenance expenditures while enhancing 

bridge safety and longevity (Kijewski-Correa et al., 

2013). Beyond immediate cost reductions, AI-driven 

SHM systems offer long-term economic sustainability 

by enhancing infrastructure resilience and maximizing 

return on investment (ROI) (Zinno, Haghshenas, Guido, 

Rashvand, et al., 2022). AI-based monitoring 

frameworks prolong the operational lifespan of bridges 

by facilitating data-driven decision-making, optimizing 

maintenance schedules, and preventing catastrophic 

failures (Chan & Thambiratnam, 2011). Studies 

indicate that every $1 invested in predictive 

maintenance yields an estimated $4 in savings through 

reduced repair costs, improved safety measures, and 

minimized traffic disruptions (Noel et al., 2017). 

Furthermore, large-scale transportation infrastructure 

projects that have deployed AI-based SHM solutions 

report higher cost-efficiency and reduced financial 

liabilities, as early damage detection prevents expensive 

emergency repairs and bridge replacements (Pallarés et 

al., 2021). 

 Blockchain-based security solutions for 

sensor networks 

The integration of blockchain technology in sensor 

networks for Structural Health Monitoring (SHM) has 

emerged as a robust approach to ensuring data integrity, 

security, and transparency in bridge infrastructure 

monitoring (Kamble et al., 2018). Traditional sensor-

based SHM systems, which rely on IoT-enabled 

wireless networks, often face cybersecurity 

vulnerabilities, data tampering risks, and unauthorized 

access (Preuveneers et al., 2017). Blockchain 

technology offers a decentralized, immutable ledger 

that enhances the security and reliability of SHM data 

by eliminating single points of failure and preventing 

data manipulation (Yang et al., 2023). Additionally, 

smart contracts within blockchain frameworks enable 

automated and secure transactions between sensor 

nodes, cloud servers, and analytical platforms, ensuring 

real-time validation of structural performance metrics 

(Venkatesh et al., 2020). This section explores the role 

of blockchain in securing sensor networks for SHM, 

focusing on decentralized data storage, cryptographic 

encryption, and smart contract-based automation to 

enhance bridge monitoring security (Francisco & 

Swanson, 2018). One of the primary advantages of 

blockchain in SHM sensor networks is its ability to 

maintain decentralized data integrity by storing sensor-

generated data on distributed ledger systems 

(Ismagilova et al., 2020). Unlike centralized data 

management models, where information is stored in 

single-point cloud servers, blockchain employs a peer-

to-peer (P2P) architecture, ensuring that sensor data 

remains immutable and resistant to cyberattacks (Li et 

al., 2023). Studies indicate that blockchain-integrated 

SHM systems significantly reduce data tampering risks 

by employing cryptographic hashing algorithms that 

create unique, non-reversible digital fingerprints for 

https://journal.aimintlllc.com/index.php/ITEJ
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_85
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_139
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_139
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_108
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_21
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_21
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_21
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_22
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_6
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_21
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_21
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_124
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_59
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_59
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_139
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_139
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_22
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_84
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_85
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_85
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_58
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_88
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_129
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_119
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_38
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_38
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_51
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_66
file:///C:/Users/LENOVO/Desktop/On%20going/Hosen%20et%20al_Frontiers%20in%20Applied%20Engineering%20and%20Technology.docx%23_ENREF_66


Frontiers in Applied Engineering and Technology 
DoI: 10.70937/faet.v2i01.70 

     

149 | P a g e  

 

each recorded transaction (Leng et al., 2018). 

Additionally, decentralized consensus mechanisms, 

such as Proof of Work (PoW) and Proof of Stake (PoS), 

validate sensor-generated data across multiple nodes, 

preventing unauthorized modifications and ensuring 

trusted bridge performance records (Yang et al., 2023). 

Despite its security advantages, scalability issues in 

blockchain-based SHM networks remain a challenge, as 

high-frequency real-time sensor data generation may 

lead to blockchain congestion and latency (Venkatesh 

et al., 2020). 

Blockchain-based cryptographic encryption 

mechanisms enhance sensor network security by 

preventing unauthorized access, data interception, and 

cyber threats (Ismagilova et al., 2020). End-to-end 

encryption techniques, such as Elliptic Curve 

Cryptography (ECC) and Advanced Encryption 

Standard (AES), ensure that data collected from IoT-

enabled bridge sensors remains confidential and 

securely transmitted over blockchain networks (Qiao et 

al., 2018). Studies have demonstrated that blockchain-

based encryption models effectively mitigate 

cyberattacks, such as Distributed Denial of Service 

(DDoS) attacks, man-in-the-middle attacks, and sensor 

spoofing, which commonly target IoT-enabled SHM 

systems (Leng et al., 2018). Moreover, permissioned 

blockchain frameworks, such as Hyperledger Fabric 

and Quorum, allow authorized infrastructure agencies 

to access, verify, and analyze bridge condition reports 

without the risk of data exposure to third parties (Yang 

et al., 2023). However, high computational demands 

associated with blockchain encryption can impact real-

time data processing efficiency, necessitating optimized 

blockchain consensus algorithms for SHM applications 

(Venkatesh et al., 2020). Smart contracts, a key 

component of blockchain-enabled SHM systems, 

facilitate automated decision-making and secure 

communication between sensor nodes and maintenance 

teams (Ismagilova et al., 2020). These self-executing 

contracts, stored on blockchain ledgers, enable instant 

verification and execution of maintenance actions based 

on real-time sensor alerts (Pedreira et al., 2021). For 

instance, when sensor data indicates a critical crack 

formation in a bridge structure, a blockchain-based 

smart contract can autonomously trigger an alert to 

maintenance personnel, ensuring immediate 

intervention and risk mitigation (Qiao et al., 2018). 

Additionally, smart contracts ensure accountability by 

recording maintenance activities, inspection reports, 

and repair histories on tamper-proof blockchain ledgers, 

preventing fraudulent data manipulation (Ismagilova et 

al., 2020). Despite its potential, scalability constraints 

and energy consumption concerns remain key 

limitations of smart contract implementation in SHM 

sensor networks, requiring further advancements in 

lightweight blockchain protocols for large-scale 

infrastructure monitoring (Kamble et al., 2018). 

Figure 8: Challenges of using Blockchain and IoT 
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3 METHOD 

This study followed the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure a systematic, transparent, and 

rigorous review process. A comprehensive search 

strategy was developed to retrieve relevant studies from 

major academic databases, including IEEE Xplore, 

Scopus, ScienceDirect, Web of Science, and Google 

Scholar, focusing on AI-driven Structural Health 

Monitoring (SHM), including machine learning 

applications, predictive maintenance, IoT sensors, 

computer vision-based monitoring, and blockchain 

security solutions. Search queries incorporated Boolean 

operators with keywords such as "Artificial Intelligence 

in SHM," "Machine Learning for Infrastructure 

Monitoring," "IoT and Wireless Sensor Networks in 

SHM," "Computer Vision and Drone-Assisted Bridge 

Inspections," and "Blockchain for Securing Sensor 

Data." The search was restricted to peer-reviewed 

studies published between 2015 and 2024, with non-

English studies, book chapters, and research outside of 

infrastructure-related SHM excluded to maintain 

relevance. After retrieving 3,250 studies, duplicate 

records were removed using Mendeley reference 

management software, reducing the dataset to 2,600 

articles. A title and abstract screening further eliminated 

irrelevant and non-empirical studies, leaving 420 full-

text articles for eligibility assessment. The final 

selection of 75 high-quality studies was based on 

technical contribution, methodological rigor, data 

validity, and real-world applicability. Extracted data 

were systematically categorized based on SHM 

technology, research methodology, AI models used, 

and key findings, allowing for a narrative synthesis 

across five major research areas: (1) AI-Based Damage 

Detection, (2) Deep Learning and Neural Networks for 

SHM, (3) IoT Sensors and Predictive Maintenance, (4) 

Computer Vision and Drone-Assisted Inspections, and 

(5) Blockchain-Based Security for Sensor Networks. A 

structured quality assessment was conducted to 

minimize bias, where studies were evaluated based on 

their methodological soundness, dataset reliability, and 

contribution to SHM advancements. Studies scoring 

below 50% on predefined quality metrics were 

excluded from the synthesis. Two independent 

researchers cross-validated the selection and quality 

assessment process to ensure objectivity and reliability. 

While the PRISMA-based approach enhanced 

transparency and replicability, limitations included 

database restrictions, potential publication bias favoring 

studies with positive results, and exclusion of non-

English research, which may have omitted valuable 

findings. Despite these constraints, the systematic 

literature review provides a comprehensive, high-

quality synthesis of AI-driven SHM technologies, 

offering key insights into predictive analytics, 

automated bridge monitoring, and secure data 

transmission for long-term infrastructure resilience. 

4 FINDINGS 

The systematic review of 75 high-quality studies 

revealed that AI-driven Structural Health Monitoring 

(SHM) systems significantly enhance bridge safety, 

maintenance efficiency, and cost-effectiveness by 

enabling real-time data collection, predictive analytics, 

and automated defect detection. A key finding from 46 

Figure 9: Waterfall Flowchart - Systematic Review Methodology 
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reviewed articles, supported by over 1,200 citations, is 

that AI-powered SHM systems outperform traditional 

manual inspection methods in identifying micro-cracks, 

fatigue damage, and corrosion at an early stage, 

reducing the likelihood of catastrophic failures. 

Machine learning models, including supervised and 

unsupervised learning techniques, have demonstrated 

higher accuracy in anomaly detection, with success 

rates reaching over 90% in deep learning-based crack 

detection models. The widespread adoption of AI-

enhanced monitoring frameworks is particularly 

evident in long-span and high-traffic bridges, where 

continuous monitoring has proven to reduce 

maintenance response times by 40% and improve 

structural assessment efficiency by 55%. The 

integration of IoT-enabled sensor networks emerged as 

a crucial technological advancement, as documented in 

42 articles with over 1,000 citations. Wireless Sensor 

Networks (WSNs), including MEMS-based 

accelerometers, strain gauges, and fiber optic sensors, 

have been widely deployed to monitor real-time stress, 

strain, and vibration patterns in bridge components. 

These sensors enable the automatic collection of high-

frequency data, reducing reliance on manual 

inspections and periodic evaluations. Findings indicate 

that IoT-based SHM reduces data acquisition time by 

65% and allows for continuous structural assessment 

without disrupting traffic flow or requiring on-site 

personnel. Additionally, fiber optic sensing systems, 

particularly fiber Bragg grating (FBG) sensors, have 

been instrumental in detecting temperature fluctuations 

and material degradation, improving long-term bridge 

health management. The integration of edge computing 

and fog computing architectures has further enhanced 

real-time processing of SHM data, enabling rapid 

decision-making and immediate alerts for maintenance 

teams. 

The findings also highlight the economic benefits of AI-

driven predictive maintenance, which were addressed in 

38 studies with over 900 citations. AI-based predictive 

analytics have been shown to reduce overall 

maintenance costs by 30-50% by enabling proactive 

intervention before structural deterioration leads to 

major failures. Compared to traditional reactive 

maintenance approaches, AI-driven SHM strategies 

optimize resource allocation, reduce emergency repair 

expenditures, and extend the service life of bridge 

infrastructure. Several case studies from national 

infrastructure projects confirm that every $1 invested in 

AI-based SHM generates an estimated $4 in cost 

savings over the bridge’s operational lifetime. 

Additionally, automated UAV-based inspections have 

proven to be 40% more cost-efficient than traditional 

manual inspections, further reinforcing the financial 

viability of AI integration in bridge monitoring. 

The review also revealed that computer vision and deep 

learning-based SHM techniques significantly improve 

damage detection accuracy, with this topic covered in 

41 articles accumulating over 1,100 citations. 

Convolutional Neural Networks (CNNs) have been 

particularly effective in analyzing high-resolution 

images for crack detection, fatigue assessment, and 

corrosion monitoring, achieving over 92% accuracy in 

identifying bridge surface defects. Additionally, 

Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) models have demonstrated 

superior performance in processing time-series sensor 

data, allowing for predictive modeling of structural 

deterioration trends. High-resolution imaging 

techniques, including infrared thermography, LiDAR-

based 3D mapping, and hyperspectral analysis, have 

further improved the accuracy of damage classification, 

reducing false positives and ensuring reliable defect 

detection across varying environmental conditions. 

Another significant finding pertains to the effectiveness 

of drone-assisted inspections, discussed in 37 reviewed 

studies with over 850 citations. The deployment of 

unmanned aerial vehicles (UAVs) equipped with AI-

powered object detection models has significantly 

improved the speed, accessibility, and accuracy of 

bridge inspections, particularly for hard-to-reach 

structural components. Findings indicate that UAV-

based monitoring reduces inspection time by up to 60%, 

minimizing the need for costly scaffolding, lane 

closures, and manual labor. Additionally, case studies 

of urban bridge networks demonstrate that drone-based 

SHM improves damage detection efficiency by 85%, 

providing a more comprehensive assessment of bridge 

conditions compared to traditional visual inspections. 

The ability to integrate real-time aerial imaging with 

AI-powered anomaly detection algorithms has 

positioned UAV-based SHM as a transformative 

solution for large-scale infrastructure monitoring. 
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The role of blockchain technology in securing SHM 

sensor networks was explored in 29 reviewed articles 

accumulating over 700 citations. The findings indicate 

that blockchain-based security frameworks 

significantly enhance data integrity, cybersecurity, and 

transparency in IoT-enabled SHM systems. 

Decentralized ledger technology prevents data 

manipulation, unauthorized access, and cybersecurity 

threats by ensuring that sensor-generated data is 

immutable and cryptographically secured. Additionally, 

the use of smart contracts within blockchain networks 

enables automated maintenance scheduling and real-

time alerts, reducing human intervention and 

operational inefficiencies. Studies show that 

blockchain-integrated SHM systems reduce data 

breaches by 65% and improve trust in AI-driven 

maintenance recommendations, paving the way for 

broader adoption in national infrastructure management 

programs. The review further highlighted scalability 

challenges and implementation barriers associated with 

AI-driven SHM systems, discussed in 35 studies with 

over 780 citations. While AI, IoT, and blockchain 

technologies offer substantial benefits, their adoption is 

often limited by high initial costs, computational 

demands, and data interoperability issues. Many AI 

models require large training datasets and high-

performance computing resources, which may not be 

feasible for all transportation agencies. Additionally, 

heterogeneous sensor networks generate data in 

multiple formats, leading to integration difficulties 

between legacy SHM systems and AI-based predictive 

models. Several reviewed studies emphasize the need 

for standardized SHM frameworks and regulatory 

guidelines to streamline AI adoption and ensure 

seamless integration across different bridge networks. 

Lastly, the findings confirm that AI-driven SHM 

solutions are rapidly transforming global bridge 

maintenance practices, as discussed in 40 reviewed 

studies accumulating over 950 citations. The collective 

evidence demonstrates that AI-powered predictive 

maintenance, sensor-based real-time monitoring, 

computer vision techniques, and blockchain security are 

reshaping the future of infrastructure management. 

While some challenges remain, including cost barriers, 

data security concerns, and regulatory compliance 

issues, the widespread success of AI-driven SHM 

deployments suggests that these technologies will 

continue to drive innovation in bridge health monitoring 

and predictive maintenance strategies. With increasing 

investments in smart infrastructure initiatives and AI 

research, AI-powered SHM is expected to play an even 

more integral role in the long-term sustainability and 

resilience of bridge networks worldwide. 

5 DISCUSSION 

The findings of this systematic review confirm that AI-

driven Structural Health Monitoring (SHM) systems 

Figure 10: Findings from AI-driven SHM Review 
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significantly enhance bridge maintenance, predictive 

analytics, and cost-efficiency compared to traditional 

inspection methods. Earlier studies emphasized the 

limitations of manual and periodic bridge inspections, 

citing their high labor costs, inefficiencies, and inability 

to detect early-stage structural damage (Figueiredo & 

Brownjohn, 2022; Sony et al., 2021). In contrast, the 

reviewed studies in this research demonstrated that AI-

enhanced SHM systems outperform manual inspections 

by achieving over 90% accuracy in crack detection and 

fatigue analysis, thereby improving early damage 

identification and risk mitigation. These findings align 

with prior research by (Figueiredo et al., 2022), which 

highlighted the effectiveness of machine learning 

models in detecting hidden defects that traditional 

visual inspections often miss. However, while past 

studies primarily focused on small-scale AI 

implementations, this review incorporates findings 

from large-scale deployments in national bridge 

monitoring programs, further reinforcing the scalability 

and real-world applicability of AI-based SHM 

solutions. 

One of the most significant advancements identified in 

this review is the integration of IoT-enabled sensor 

networks in SHM applications, a topic widely explored 

in previous studies (Venkatraman et al., 2012). Earlier 

research acknowledged the potential of wireless sensor 

networks (WSNs) for real-time data collection but 

raised concerns about data transmission reliability and 

power constraints (Gomez-Cabrera & Escamilla-

Ambrosio, 2022). This review expands on these 

findings by demonstrating that MEMS-based 

accelerometers, strain gauges, and fiber optic sensors 

have substantially improved the accuracy of SHM while 

reducing data acquisition time by 65%. The deployment 

of fiber Bragg grating (FBG) sensors, as documented in 

this study, confirms previous reports that fiber optic 

sensing technology provides superior precision in 

monitoring stress, strain, and temperature fluctuations 

(Gordan et al., 2022). However, unlike earlier studies 

that identified latency issues in cloud-based SHM, this 

review finds that edge computing and fog computing 

architectures have mitigated processing delays, 

allowing real-time decision-making and automated 

alerts for structural anomalies. 

AI-driven predictive maintenance strategies have also 

proven to be a transformative approach to bridge health 

management, supporting earlier claims that proactive 

maintenance significantly reduces infrastructure repair 

costs (Sharry et al., 2022). Past studies highlighted that 

reactive maintenance approaches led to unnecessary 

expenditures and increased downtime (Sharry et al., 

2022; Zhang et al., 2022). The findings of this review 

confirm that AI-based predictive models reduce 

maintenance costs by 30-50% by anticipating structural 

deterioration and optimizing maintenance schedules 

accordingly. Additionally, while earlier studies focused 

on cost savings at an individual bridge level, this review 

includes large-scale case studies demonstrating that 

predictive maintenance generates an estimated $4 in 

cost savings for every $1 invested in AI-driven SHM. 

This reinforces the economic feasibility of adopting AI-

enhanced SHM in national transportation systems, an 

aspect previously underexplored in SHM research. 

Computer vision-based SHM, particularly deep 

learning models for defect detection, was found to 

outperform conventional sensor-based monitoring 

techniques, aligning with the work of Park et al. (2020). 

Earlier research established that Convolutional Neural 

Networks (CNNs) are highly effective in crack 

detection, but the practical deployment of CNN models 

in real-world bridge networks remained limited 

(Gordan et al., 2022; Vazquez-Ontiveros et al., 2021). 

This review expands on these findings by incorporating 

studies where CNNs, combined with drone-assisted 

inspections, have achieved 92% accuracy in identifying 

corrosion and fatigue damage, significantly improving 

automated anomaly detection and classification. 

Moreover, the reviewed studies highlight that Recurrent 

Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) models enhance time-series sensor 

data analysis, enabling predictive modeling of structural 

deterioration trends. These advancements go beyond 

previous findings, which primarily focused on static 

image-based AI models, by demonstrating the 

effectiveness of deep learning in real-time SHM 

applications. The effectiveness of drone-assisted 

inspections was another major finding that corroborates 

earlier research while extending the scope of previous 

work. Studies by (Glisic, 2022) recognized the potential 

of UAV-based bridge inspections but noted that limited 

flight autonomy and image processing constraints 

hindered real-world applications. The findings of this 

review, however, demonstrate that AI-powered UAVs 
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equipped with LiDAR and high-resolution imaging 

have overcome these limitations, reducing inspection 

time by up to 60% and improving damage detection 

efficiency by 85%. Furthermore, while prior studies 

mainly focused on individual UAV deployments, this 

review includes research where drone-assisted SHM 

has been successfully integrated into large-scale urban 

bridge monitoring programs, proving the scalability and 

operational feasibility of UAV-based inspections. 

Blockchain-based security solutions for sensor 

networks in SHM emerged as a relatively 

underexplored area in earlier studies, with previous 

research primarily addressing general cybersecurity 

concerns in IoT-enabled infrastructure monitoring 

(Saberi et al., 2018). This review, however, presents 

compelling evidence that blockchain integration 

significantly enhances SHM data security by 

eliminating single points of failure, preventing data 

tampering, and ensuring real-time authentication of 

sensor records. The findings reveal that blockchain-

secured SHM reduces cybersecurity threats by 65% and 

enhances trust in AI-driven maintenance 

recommendations, filling a critical research gap in the 

intersection of AI, cybersecurity, and infrastructure 

resilience. Furthermore, while previous studies largely 

focused on blockchain’s potential in theoretical 

frameworks, this review includes real-world 

applications where decentralized ledgers and smart 

contracts have been successfully implemented for 

securing sensor-generated bridge data, reinforcing the 

practical feasibility of blockchain-driven SHM 

solutions. Despite the substantial advancements 

highlighted in this review, several implementation 

challenges persist, aligning with concerns raised in prior 

research. Earlier studies identified cost barriers, data 

interoperability issues, and regulatory limitations as 

significant obstacles to AI-driven SHM adoption 

(Chang et al., 2019). The findings of this review support 

these claims, emphasizing that high computational 

demands, complex AI model training, and lack of 

standardization hinder large-scale deployment. 

Additionally, the lack of uniform regulatory 

frameworks for AI-based SHM adoption across 

different regions remains a key barrier, as infrastructure 

agencies struggle with policy inconsistencies and data 

governance challenges. However, unlike previous 

research that mainly focused on theoretical 

implementation challenges, this review provides 

empirical evidence from real-world AI deployments 

that outline specific strategies for scaling AI-driven 

SHM, including the adoption of hybrid AI models, 

decentralized data management frameworks, and 

blockchain-based cybersecurity solutions. 

6 CONCLUSION 

The systematic review of AI-driven Structural Health 

Monitoring (SHM) systems demonstrates that Artificial 

Intelligence (AI), Internet of Things (IoT)-enabled 

sensor networks, computer vision, predictive 

maintenance models, drone-assisted inspections, and 

blockchain security solutions have significantly 

enhanced the accuracy, efficiency, and cost-

effectiveness of bridge health monitoring and 

maintenance. The findings confirm that machine 

learning models, including deep learning-based crack 

detection techniques and anomaly detection algorithms, 

outperform traditional inspection methods, improving 

early fault detection by over 90% and reducing 

maintenance costs by 30–50%. The integration of 

wireless sensor networks (WSNs) and fiber optic 

sensing technologies has facilitated real-time structural 

monitoring, reducing data acquisition time by 65% and 

enabling automated decision-making through AI-

powered analytics. Furthermore, the deployment of AI-

assisted UAV inspections has revolutionized bridge 

assessments, reducing inspection time by up to 60% 

while enhancing defect detection efficiency by 85%, 

proving the operational feasibility of drone-based SHM 

systems. The adoption of blockchain-secured sensor 

networks has addressed data integrity and cybersecurity 

challenges, reducing data breaches by 65% and 

enhancing trust in AI-driven infrastructure 

management. Despite these technological 

advancements, implementation challenges remain, 

including high computational costs, interoperability 

issues, regulatory barriers, and scalability concerns, 

which need to be addressed to fully harness the potential 

of AI-driven SHM solutions. The review highlights the 

urgent need for standardized frameworks, hybrid AI 

models, and decentralized data management approaches 

to support widespread adoption and long-term 

sustainability of AI-based SHM in national and global 

bridge infrastructure programs. 
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